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1. Introduction

Staged trees define statistical models which can account for a variety of partial
and asymmetric conditional independence statements between discrete events
(Collazo, Görgen and Smith, 2018). The use of these graphical models in appli-
cations is constantly increasing (Barclay, Hutton and Smith, 2013; Collazo and
Smith, 2015; Keeble et al., 2017) and free software for practitioners is newly
available (Carli et al., 2020). However, their formal properties have only recently
been studied for the first time (Görgen and Smith, 2018). We now extend this
formal study by 1. proving that in general staged tree models form curved expo-
nential families and by 2. expressing their natural parameters, sufficient statistic,
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and cumulant-generating function as a function of the underlying graphical rep-
resentation. We also give a graphical criterion under which they form regular
exponential families.

Because exponential families exhibit a multitude of desirable inferential prop-
erties (Kass and Vos, 1997), similar characterisations for other graphical mod-
els have been studied. For instance, undirected graphical models with no hid-
den variables are regular exponential families (Lauritzen, 1996), Bayesian net-
works (e.g. Koller and Friedman, 2009) are curved exponential families, and
directed graphical models with hidden variables are stratified exponential fami-
lies (Geiger et al., 2001). These results are critical for model selection techniques.
In particular, Haughton (1988) proved that for curved exponential families the
Bayesian information criterion (Schwarz, 1978) is an asymptotically valid rule.
To this date model selection for staged trees has usually been carried out in a
Bayesian fashion by selecting the maximum a posteriori model (Freeman and
Smith, 2011; Barclay, Hutton and Smith, 2013; Cowell and Smith, 2014). Now,
our results make it theoretically sound to use the Bayesian information crite-
rion as well, and its implementation in the R package stagedtrees (Carli et al.,
2020) is thus justified. This criterion has already been employed by Silander and
Leong (2013) although its asymptotic geometric validity was not assured at the
time.

By expressing every staged tree model explicitly as a curved exponential
family, we in particular achieve such an explicit description for every discrete
Bayesian network. To the best of our knowledge, this is still missing in the liter-
ature. We demonstrate on small-scale examples how a given Bayesian network’s
exponential form can be stated in staged-tree language. We can then also specify
new graphical criteria under which the model is a regular exponential family.

2. Staged trees

2.1. Probability trees as graphical statistical models

Probability trees are highly intuitive depictions of unfoldings of discrete events
(Shafer, 1996) and have been used in a variety of real-world applications (Smith,
2010; Collazo, Görgen and Smith, 2018).

Let T be a directed, rooted tree graph where every vertex has either no or
at least two emanating edges. For simplicity, we number the inner (non-leaf)
vertices v1, . . . , vk, with v1 denoting the root, and count the edges emanating
from each vertex with indices j = 1, . . . , κi for all i = 1, . . . , k. To every edge
we assign a positive probability label θij ∈ (0, 1) such that the total sum of all
labels belonging to the same vertex is always equal to one,

∑κi

j=1 θij = 1. Such
a labelled tree graph is called a probability tree.

For all root-to-leaf paths x of T we define pθ(x) =
∏k

i=1

∏κi

j=1 θ
αij(x)
ij where

αij(x) is one if x passes through the jth edge emanating from vi and zero other-
wise. By the constraints on the θij , the function pθ is a probability distribution
on the set of all root-to-leaf paths. We denote the size of this set by n. A prob-
ability tree model is then the set of all such probability distributions pθ on n
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Fig 1. Two discrete graphical models. Vertices which are in the same stage have been assigned
the same colour. In this picture, white-coloured vertices are not in the same stage with any
other vertex.

atoms, for varying labels θ. The set of parameters θ satisfying the constraints
above is the parameter space ΘT of the model. It equals the product ×k

i=1Δ
◦
κi−1

of the k open probability simplices Δ◦
κi−1 = {(t1, . . . , tκi) ∈ R

κi |
∑κi

r=1 tr =
1 and 0 < tr < 1 for all r = 1, . . . , κi}. Thus, the parameter space ΘT has

dimension d =
∑k

i=1(κi − 1).

2.2. Probability trees and conditional independence

An event in a probability tree is a set of root-to-leaf paths, often specified
by shared vertices or edges. Conditional independence relationships between
events can be visualized using a simple type of colouring of these vertices in the
following way.

A staged tree is a probability tree together with an equivalence relation on
the vertex set such that two vertices are in the same stage if and only if their
outgoing edges have the same attached probabilities. Figure 1 decpits a first
example. A staged tree model is a submodel of a probability tree model where
probability simplices in the parameter space have been identified with each other
according to the equivalence relation.

For example, if a tree depicts the product state space of a vector of dis-
crete random variables Yi, then every inner vertex represents a random vari-
able Yi | Y[i−1] = y[i−1] conditional on specific values taken by its ancestors,
every edge corresponds to a state yi of that variable, and every edge can be
labelled by the conditional probability P (Yi = yi | Y[i−1] = y[i−1]) of the ran-
dom variable being in that state given the particular ancestor configuration.
Here, [i − 1] is the set of indices {1, . . . , i − 1}. The stage relations on the
tree can then be used to model conditional independence relations such as
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P (Yi = yi | y[i−1]) = P (Yi = yi | y′[i−1]).

To illustrate this, in Fig. 1(a) the upward edge emanating from v2 can be la-
beled P (Y = 0 | X = 0) and the upward edge from v4 as P (Z=0 | X=0, Y =0).
Here, the vertices v2 and v3 are in the same stage. This models the independence
X ⊥⊥ Y via the equalities P (Y = y | X = 0) = P (Y = y | X = 1) for y = 0, 1.
Similarly in Fig. 1(b), the additional stages together entail Z ⊥⊥ X | Y .

Thus, staged tree models include as a special case both discrete Bayesian
networks and context-specific discrete Bayesian networks, modelling conditional
independence relations that hold only for a subset of the states of a discrete ran-
dom variable (Boutilier et al., 1996). In particular, all conditional independence
relations given by the Bayesian network can be reflected in the staging as de-
scribed above. Varando, Carli and Leonelli (2021) give an algorithm that for
any Bayesian network G outputs a staged tree TG representing the same model.

Because probability trees and staged trees may have root-to-leaf paths of
different lengths and because there are no constraints on where stages can be
imposed, the class of staged tree models is much wider than the one of discrete
Bayesian networks. Working within this class unlocks an immediate graphical
representation of modeling assumptions such as the space of events, the intricate
conditional independence relationships within this space, and the local sum-
to-one conditions. Because staged trees grow quickly even for small problems,
whenever they exhibit many symmetries in their subtrees they are sometimes
represented more compactly by alternative graphical depictions called chain
event graphs: see the textbook by Collazo, Görgen and Smith (2018) for an
in-depth discussion of these points.

3. Staged trees are curved exponential families

3.1. Exponential families

Following Kass and Vos (1997), a parametric statistical model {pθ | θ ∈ Θ} on
a space X is called an exponential family if every distribution in the model can
be written in the form

pθ(x) = h(x) exp
(
η(θ)�T (x)− ψ(θ)

)
for all x ∈ X (1)

where η : Θ → R
d is the canonical parameter, T : X → R

d is a minimally
sufficient statistic, � denotes the transpose operation, and ψ : Θ → R is the
cumulant-generating function. The space N = {η(θ) ∈ R

d | (1) is integrable} is
called the natural parameter space. If N is an open and non-empty subset of Rd

then the model is called a regular exponential family of dimension d.
For exponential families, moments of all orders exist and the maximum like-

lihood estimator exists and is unique. Regular exponential families are closed
under linear contraints on the natural parameter space and the log-likelihood
function on that space is concave. Under more general constraints on the pa-
rameters, these families are more technical to study but can often retain many
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useful asymptotic properties. The two best-studied generalizations of regular
exponential families are so-called curved and, more generally, stratified expo-
nential families. The development of this paper requires only the former type of
models which we formally introduce in the third subsection below.

3.2. Regular exponential families

In a first step, we focus on probability trees without imposing a stage structure.
In this context, the probability tree whose graph is a root vertex connected to
its leaves exclusively via single edges is a star as in the graph-theoretic sense.

Lemma 1. Every probability tree model on n atoms is equal to the full proba-
bility simplex Δ◦

n−1.
In particular, the star with n leaves and with probability θ1r attached to edge

r, for r = 1, . . . , n, represents the Multinomial distribution Multi(1, θ) with one
trial and parameters θ = (θ11, . . . , θ1n).

Proof. Every probability tree with n root-to-leaf paths specifies a set of dis-
tributions inside the open n − 1-dimensional probability simplex as outlined
in Section 2.1. Conversely, given a fixed tree graph with n leaves, every point
(p1, . . . , pn) inside the simplex can be interpreted as a vector whose rth compo-
nent pr is the probability of going down the rth root-to-leaf path in the tree,
r = 1, . . . , n. We can pick the label of the jth edge out of vertex vi to be the
fraction

∑
b∈[ij] pb/

∑
a∈[i] pa where [i], [ij] ⊆ {1, . . . , n} denote the indices of

all root-to-leaf paths passing through vertex vi or through the tail of its jth
outgoing edge, respectively. These labels are conditional probabilities and their
product along a root-to-leaf path is equal precisely to the atomic probability of
that path. This proves the first claim.

As for the second claim, pθ(x) =
∏n

r=1 θ
α1r(x)
1r where

∑n
r=1 θ1r = 1 is the

probability distribution induced by the star with edges numbered r = 1, . . . , n.
This is the stated Multinomial distribution.

Wishart (1949) derives the exponential form (1) for the Multinomial distribu-
tion Multi(1, θ) as follows: h ≡ 1 is constant, the natural parameters are normal-

ized log-probabilities ηr(θ) = log(θ1r/(1−
∑n−1

s=1 θ1s)) for r = 1, . . . , n, the suffi-
cient statistic is the vector of the first n−1 edge indicators T = (α11, . . . , α1,n−1),
and the cumulant-generating function is the logarithm of the normalizing con-
stant ψ(θ) = log(1−

∑n−1
s=1 θ1s).

By Lemma 1, all probability trees on the same number of root-to-leaf paths
are statistically equivalent in the sense that they all represent the same model,
namely the full probability simplex. Thus, any probability tree is a graphical
representation of the Multinomial distribution, and Wishart’s result gives a
sufficient statistic, cumulant-generating function, and the natural parameters
for any probability tree, possibly after reparametrization.

In Proposition 1, we give a parametrization of the exponential family of a
probability tree model which is alternative to Wishart’s. This new parametriza-
tion has the advantage of respecting the structure of trees having root-to-leaf
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Fig 2. Illustration of the notation used in Proposition 1. The natural parameter ηij belonging
to the indicator αij of “passing through the edge (vi, vij)” is a function of the label θij of
that edge and of the products Ni and Nij of the labels of the downwards pointing vi- and
vij-to-leaf paths, respectively. The edges involved in the definition of ηij are depicted in bold.

paths longer than single edges. Retaining this extra structure allows us to gen-
eralize the exponential-family parametrization of probability trees to the case
of staged trees in Section 3.3.

We thus derive the following result. Here for any probability tree T we say
that the κith edge emanating from vertex vi points downwards, i = 1, . . . , k. We
then recursively define functions Ni : ΘT → R as Ni(θ) = 1 for leaf vertices vi
and else as a product of labels pointing downwardsNi(θ)=(1−

∑κi−1
s=1 θis)Niκi(θ)

for i = 1, . . . , k. The shorthand Nij denotes Nr for the vertex vr which is the
tail of the jth edge coming out of vertex vi. Figure 2 illustrates this notation.

Proposition 1. Every probability tree T with parameters θ represents a regular
exponential family with the following attributes:

• the indicators Tij = αij of the first j = 1, . . . , κi − 1 edges of all inner
vertices i = 1, . . . , k are a sufficient statistic,

• the natural parameters ηij are locally normalized log-probabilities defined
by ηij(θ) = log(θijNij(θ)/Ni(θ)) for all j = 1, . . . , κi − 1 and i = 1, . . . , k,

and the natural parameter space is R
d with d =

∑k
i=1(κi − 1), and

• the cumulant-generating function is the negative log-sum of normalizing
constants along the root-to-leaf path whose edges all point downwards,
ψ(θ) = − log(N1(θ)).

Proof. The desired parametrization is equivalent to

pθ(x) = N1(θ)

k∏
i=1

κi−1∏
j=1

(
θij

Nij(θ)

Ni(θ)

)αij(x)

for all x. (2)

To prove this equality, we first rewrite the probability mass function intro-
duced in Section 2. For any inner vertex i = 1, . . . , k in the probability tree,
the label of the κith outgoing edge is a function of the first 1, . . . , κi − 1 edges,
namely θiκi = 1−

∑κi−1
j=1 θij . The indicator αiκi of passing along that edge is a

function of the indicators of those same edges and equals αi(x)(1−
∑κi−1

j=1 αij(x))
where αi(x) is one if x reaches vertex vi and zero otherwise.
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Thus, the probability mass function of a probability tree can be written as

pθ(x) =

k∏
i=1

κi∏
j=1

θ
αij(x)
ij =

k∏
i=1

κi−1∏
j=1

θ
αij(x)
ij

(
1−

κi−1∑
j=1

θij

)αi(x)(1−
∑κi−1

j=1 αij(x))

.

And as a consequence, the claim reduces to:

k∏
i=1

(
1−

κi−1∑
j=1

θij

)αi(x)(1−
∑κi−1

j=1 αij(x))

= N1(θ)

k∏
i=1

κi−1∏
j=1

(
Nij(θ)

Ni(θ)

)αij(x)

(3)

for all root-to-leaf paths x. We now prove this claim by induction on the number
of inner vertices k.

Let thus in a first step the graph be a star, k = 1. If x is the root-to-leaf
path which is one of the first 1, . . . , κ1−1 edges coming out of the root then (3)
states that 1 = N1(θ) · 1/N1(θ) = 1. If otherwise x equals the κ1st edge then

1−
∑κ1−1

j=1 θ1j = N1(θ) which is also true.
If k > 1 then x may have length greater one and we distinguish two analogous

cases. Hereby the induction hypotheses holds for trees smaller than the one we
consider and so, in particular, the claim is true for its subtrees. Without loss,
we number the vertex at the tail of the first edge of x as v2. For simplicity, A
denotes the left hand side of (3) and B the right hand side of that equation.
Then:

Case 1: The edge (v1, v2) is one of the first 1, . . . , κ1 − 1 edges coming out of
the root. Then

A = 1 ·
k∏

i=2

(
1−

κi−1∑
j=1

θij

)αi(x)(1−
∑κi−1

j=1 αij(x))

= N2(θ)

k∏
i=2

κi−1∏
j=1

(
Nij(θ)

Ni(θ)

)αij(x)

= N1(θ)
N2(θ)

N1(θ)

k∏
i=2

κi−1∏
j=1

(
Nij(θ)

Ni(θ)

)αij(x)

= B

where the final step is true because N2(θ) = N12(θ).
Case 2: The edge (v1, v2) is the κ1st edge coming out of the root. Then

A =

(
1−

κ1−1∑
j=1

θ1j

) k∏
i=2

(
1−

κi−1∑
j=1

θij

)αi(x)(1−
∑κi−1

j=1 αij(x))

=

(
1−

κ1−1∑
j=1

θ1j

)
N2(θ)

k∏
i=2

κi−1∏
j=1

(
Nij(θ)

Ni(θ)

)αij(x)

= N1(θ)

k∏
i=2

κi−1∏
j=1

(
Nij(θ)

Ni(θ)

)αij(x)

= B
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where the final step is true because
∏κ1−1

j=1 (N1j(θ)/N1(θ))
α1j(x) = 1.

This proves (2), and every probability tree represents an exponential family
in this parametrization.

The regularity claim follows since the map η is a diffeomorphism between the
space of model parameters Θ and R

d. Indeed, it has a smooth inverse obtained
by first computing pη for a given η ∈ R

d according to the given parametrization
and then computing θ ∈ Θ such that pη = pθ as described in the proof of
Lemma 1.

Proposition 1 enables us to simply read the parametrisation of the underlying
exponential family directly from a given probability tree.

Example 1. Consider Fig. 1 and the probability tree which has the same graph
as the staged trees in Fig. 1(a) and 1(b). For simplicity, in this binary tree we
do not use double indices but label the upwards edges going out of vertex vi as
θi and the downward edges as 1− θi for i = 1, . . . , 7.

The indicator functions αi1 of the upwards edges i = 1, . . . , 7 are a sufficient
statistic for this tree. The corresponding natural parameters are then log-ratios
of the downwards labels derived as

η1(θ) = log(θ1(1− θ2)(1− θ5)/(1− θ1)(1− θ3)(1− θ7)),

η2(θ) = log(θ2(1− θ4)/(1− θ2)(1− θ5)),

η3(θ) = log(θ3(1− θ6)/(1− θ3)(1− θ7)),

and ηi(θ) = log(θi/(1− θi)) for i = 4, . . . , 7. The cumulant-generating function
is the logarithm of the product of the labels along the downward root-to-leaf path
coming out of the root vertex ψ(θ) = − log [(1− θ1)(1− θ3)(1− θ7)].

3.3. Curved exponential families

As stated in Section 2.2, every discrete Bayesian network has a corresponding
staged tree representation. Since for instance the collider graph does not rep-
resent a regular exponential family (Koller and Friedman, 2009), staged trees
cannot in general be regular exponential families either. They rather form what
is called a curved exponential family: a submodel of a regular exponential family
whose parameter space is a smooth manifold (Efron, 1978).

Theorem 1. Staged tree models are curved exponential families.

Proof. By Proposition 1, every staged tree model is a submodel of a regular ex-
ponential family. We prove that the natural parameter space is always a smooth
manifold of the right dimension by showing that it is the image of a certain
linear subspace of Θ under the diffeomorphism η.

Let T0 denote a probability tree with parameter space Θ0 = ×k
i=1Δ

◦
κi−1. Let

T denote the same tree graph together with an imposed stage structure and
parameter space ΘT = ×r∈RΔ

◦
κr−1 for some index set R ⊆ {1, . . . , k}. The

parameter space of the staged tree model is the kernel of the parameter space of
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the saturated model under the linear function hT : Rd0 → R
d0−d which encodes

the d0 − d identifications of edge labels as

hT (θ) =
(
θij−θst | for all j = t = 1, . . . , κj and all vi and vs in the same stage

)
(4)

where d =
∑

r∈R(κr − 1) is the number of free parameters in the staged tree,

and d0 =
∑k

i=1(κi − 1) is the number of free parameters in the probability tree.
By construction, hT (θ) = 0 if and only if θ fulfills the stage constraints in T .
That is, the parameter space of the staged tree model equals the kernel of the
map (4), so h−1

T (0) = ΘT .
Since hT is surjective, its kernel is d-dimensional. Thus, the parameter space

of the staged tree model is a d-dimensional linear space in R
d0 . As a consequence,

the natural parameter space, obtained as the image of the diffeomorphism η
given in Proposition 1, is a smooth manifold of the same dimension. The claim
follows.

As an alternative proof strategy for Theorem 1 one may use the character-
ization of staged tree models as the solution set of a collection of polynomial
equations and inequalities provided by Duarte and Görgen (2020). Whenever
these polynomials do not exhibit any algebraic singularities inside the probabil-
ity simplex, the model is a curved exponential family: compare the discussion
of implicit model representations given in Geiger et al. (2001) and of algebraic
exponential families in Drton and Sullivant (2007).

In particular, whilst the equations coding stage constraints in the conditional
probabilities as in (4) are always linear, those coding the same constraints for-
mulated in terms of the natural parameters in general are not. In the following
proposition we describe these constraints and explain when they are linear.

Proposition 2. Let T be a staged tree. For every vertex vi and outgoing edge in-
dexed by j, let ηij denote the natural parameter of the exponential form derived in
Proposition 1, where we additionally define ηiκi = 0. Let further ξij = exp(ηij)

and Pij =
∑

r

∏
ab ξ

αab(r)
ab where r ranges over the vij-to-leaf paths for every

fixed double index ij.
Then two vertices vi and vs are in the same stage if and only if they have the

same number κ of emanating edges and for all j = 1, . . . , κ the equality

ηij + log(Pij) + log(Psκ) = ηsj + log(Psj) + log(Piκ) (5)

is true.
Furthermore, let Nij denote the product of the labels along the downwards-

pointing vij-to-leaf path as in Proposition 1. Then (5) is a linear expression in
the η if and only if PijPsκ = PsjPiκ, or equivalently

NijNsκ = NsjNiκ. (6)

Proof. By definition, ξij = θijNij/Ni. For any i and edge j emanating from vi,
the equalities

NijPij =
∑
r

Nij

∏
ab

ξ
αab(r)
ab =

∑
r

∏
ab

θ
αab(r)
ab = 1



2616 C. Görgen et al.

are true, where r ranges over the vij-to-root paths. In particular, the second
equality is obtained by applying (2) to the subtree rooted at vij . The third
equality holds because its left-hand side is the sum of all atomic probabil-
ities associated to the subtree rooted at vij . Now let vi and vs be in the
same stage. Equivalently, θij = θsj for all j = 1, . . . , κ. This is equivalent to
ξijNi/Nij = ξsjNs/Nsj which in turn is equivalent to ξijNiκ/Nij = ξsjNsκ/Nsj

simply because θiκ = θsκ. Using NijPij = 1, rearranging, and taking logarithms
yields the statement in (5).

As for the second claim, if (6) holds then the log terms in (5) vanish, making
it a linear expression in the η. Conversely, let (5) be a linear expression in the
η. Then the expression

log(PijPsκ/PsjPiκ)

is also linear in the η. This implies PijPsκ/PsjPiκ = c
∏

ab ξ
βab for some c, βab ∈ R.

Since the left-hand side of this equality is a rational function in the ξ, all βab

must be integers. Indeed, otherwise there would exist a choice of ξ that would
make the right-hand side evaluate to an irrational number whilst the left-hand
side can only evaluate to rational numbers. So, we obtain an equation of the
form

PijPsκ

∏
ab∈A

ξβab

ab = PsjPiκ

∏
cd∈B

ξβcd

cd

for some sets A,B of indices and βab, βcd ∈ N.
Suppose now that one of A and B is nonempty, without loss of generality

assume it to be B. Then some ξcd divides Pij . By the definition of Pij , the only
way this is possible is if ξcd divides all summands of Pij . That is, if all paths of
the subtree rooted at vij (relabeled with θ �→ ξ) have the label ξcd in common.
But this is impossible because in a staged tree we assume that each node has
at least two children, and thus we can always find a path that avoids the label
ξcd. Hence we see that both A and B must be empty, so PijPsκ = PsjPiκ. And
hence NijNsκ = NsjNiκ using NijPij = 1.

Let T be a staged tree. Proposition 2 shows that the exponential family
of T proposed in this paper is a regular exponential family if and only if the
equality of ratios in (6) is true for every pair of vertices vi and vs in the same
stage and every edge j emanating from these vertices. For this reason, staged
trees satisfying this property are of particular interest. We henceforth call these
regular staged trees.

Equation (6) gives a simple criterion for regularity by comparing certain con-
catenations of downwards-pointing paths. Algebraically, it can be checked by
comparing the monomials

∏
ab θab obtained by multiplying all labels in the four

downward-pointing paths starting from vij , viκ, vsj , vsκ, respectively. Graphi-
cally, it can be verified by checking that the concatenation of the first and
fourth path on the above list is the same as the concatenation of the second and
third, up to a permutation of the edges.

Next, we explore two prominent classes of regular staged trees. The notion
of a balanced staged tree, first formalized in Duarte and Ananiadi (2021), is
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an important notion for studying the toric geometry of staged trees (Görgen,
Maraj and Nicklasson, 2021). It makes use of the interpolating polynomials tij

defined by tij =
∑

r

∏
ab θ

αab(r)
ab , where r ranges over the vij-to-leaf paths. This

sum is to be read as a formal sum of labels, i.e. without using local sum-to-one
conditions. (Including these conditions would imply tij = 1.) A staged tree is
balanced if for all vi and vs in the same stage and all edges j emanating from vi we
have tijtsκ = tiκtsj , where again κ denotes the chosen downwards-pointing edge
emanating from vi. This definition for balanced staged trees differs slightly from
the one found in the literature but is nevertheless equivalent to it. For a graphical
interpretation of this condition, note that tijtsκ is the interpolating polynomial
of the staged tree obtained by attaching a copy of the subtree rooted at vsκ
to each of the leaves of the subtree rooted at vij . The condition for a balanced
tree now is equivalent to this composite tree being statistically equivalent to the
composite tree corresponding to the product tiκtsj .

Simple staged trees are defined in Collazo, Görgen and Smith (2018). A staged
tree is simple if for all vi and vs in the same stage and all edges j emanating
from vi we have tij = tsj .

Proposition 3. All balanced staged trees are regular. In particular, all simple
staged trees are regular.

Proof. By definition, all simple trees are balanced. Now let T be a balanced
staged tree and vi, vs vertices in the same stage. Let j be an edge emanating
from vi. Splitting off the unique downwards-pointing path from vij , write tij =
t′ij +Nij , and likewise for the other pairs of indices. Then

0 = tijtsκ − tiκtsj

= (t′ijt
′
sκ − t′sjt

′
iκ + t′ijNsκ − t′sjNiκ + t′sκNij − t′iκNsj) + (NijNsκ −NsjNiκ)

=: R+Q

where we define R resp. Q to be the left resp. right outer summand of the middle
expression. Consider this expression as a polynomial P in the θab labels. Split
this set of labels into two sets A and B of labels pointing downwards, resp. not
pointing downwards. Thus P can be viewed as a polynomial in R[A][B]. Now,
all summands of P in R are divisible by some label in the set B. This means
that Q ∈ R[A] is the constant term of the polynomial P ∈ R[A][B]. Thus P = 0
implies Q = 0.

The following converse to Proposition 3 holds for all binary trees with three
levels.

Conjecture 1. All regular staged trees are balanced.

As an indication for this conjecture, while (6) seems much weaker than the
balanced condition for two nodes vi and vs, in a regular tree it can be applied
recursively everywhere downstream of vi and vs, greatly limiting the possible
staging structure.
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Example 2. Figure 1(a) shows a staged tree representation of the collider
Bayesian network X → Z ← Y which is not a regular exponential family. We
can see here that indeed in our parametrization, the linear stage identifications
θ2 = θ3 do not give rise to linear constraints on the natural parameters η2 and
η3. Instead, by Proposition 2,

η2 + log(ξ4 + 1) + log(ξ7 + 1) = η3 + log(ξ5 + 1) + log(ξ6 + 1)

where ξl = exp(ηl) for l = 1, . . . , 7. This implies the following equation

exp(η2)(1 + exp(η4))(1 + exp(η7)) = exp(η3)(1 + exp(η5))(1 + exp(η6))

which fully characterises the corresponding curved exponential family in the nat-
ural parameters.

The staged tree in Fig. 1(b) however fulfills the linearity criteria in Propo-
sition 2. In particular, the stage constraints θ2 = θ3, θ4 = θ6, and θ5 = θ7
together imply that (1 − θ4)(1 − θ7) = (1 − θ6)(1 − θ5) as in (6). They thus
give rise to linear (equality) constraints η2 = η3 on the natural parameters. The
same simplification would occur were v4 and v5, and v6 and v7 in the same
stage, respectively, rather than v4 and v6, and v5 and v7. These stagings all give
rise to balanced and regular trees.

Equations on the natural parameters in a curved exponential family can be
highly non-trivial. In this paper we found that for a staged tree they are func-
tions of subgraphs, derived from the conditional independence relations coloured
in the tree. Thus, the equations on its exponential family parametrization can
be directly read from the graph. This formulation has only been possible thanks
to the probability tree’s expressiveness of the underlying space of events and of
its parametrization.

Analogous results have to the best of the authors’ knowledge not been derived
in the literature of Bayesian networks. While sufficient statistics for these models
are known, natural parameters have not been explicitly computed (e.g. Loh
and Wainwright, 2013). In order to translate our formulae into the language of
Bayesian networks, first a given directed acyclic graph needs to be transformed
into the corresponding staged tree using the algorithm provided by Varando,
Carli and Leonelli (2021), and then the staged-tree language can be used to infer
a natural parametrization as in Proposition 1. Bayesian networks themselves
provide a too-compact representation of the underlying modelling assumptions
to be able to directly express their exponential form as a function of the graph.
However, Proposition 3 yields the following insight.

Corollary 1. Let G be a Bayesian network. The exponential family obtained
by applying Proposition 1 to the associated staged tree TG is regular if G is
decomposable or if there exists a topological ordering (1, . . . , nG) of the nodes of
G such that the parents of the (i+1)th node are a subset of the union of the ith
node and its parents for all i.

Proof. The first statement is well known but also a direct consequence of the
fact that TG is balanced if and only if G is decomposable (Duarte and Solus,
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2021). The second statement corresponds to the definition of G being simple
given in Leonelli and Varando (2022). These authors prove that G is simple if
and only if TG is simple. By Proposition 3, simple staged trees form regular
exponential families.
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