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Random Points on an Algebraic Manifold\ast 
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Abstract. Consider the set of solutions to a system of polynomial equations in many variables. An algebraic
manifold is an open submanifold of such a set. We introduce a new method for computing integrals
and sampling from distributions on algebraic manifolds. This method is based on intersecting with
random linear spaces. It produces independent and identically distributed samples, works in the
presence of multiple connected components, and is simple to implement. We present applications to
computational statistical physics and topological data analysis.
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1. Introduction. In statistics and applied mathematics, manifolds are useful models for
continuous data. For example, in computational statistical physics the state space of a col-
lection of particles is a manifold. Each point on this manifold records the positions of all
particles in space. The field of information geometry interprets a statistical model as a mani-
fold, each point corresponding to a probability distribution inside the model. Topological data
analysis studies the geometric properties of a point cloud in some Euclidean space. Learning
the manifold that best explains the position of the points is a research topic in this field.

Regardless of the context, there are two fundamental computational problems associated
with a manifold \scrM .

(1) Approximate the Lebesgue integral
\int 
\scrM f(x)dx of a given function f on \scrM .

(2) Sample from a probability distribution with a given density on \scrM .
These problems are closely related in theory. In applications however, they may occur sep-
arately. For instance, in section 2 we present an example from computational physics that
involves only (1). On the other hand, the subsequent example from topological data analysis
is about (2).

In general these problems are easy for manifolds which admit a differentiable surjection
\BbbR k \rightarrow \scrM , also called parametrized manifolds. They are harder for nonparametrized mani-
folds, which are usually represented as the sets of nonsingular solutions to some system of
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684 PAUL BREIDING AND ORLANDO MARIGLIANO

differentiable implicit equations

(1.1) Fi(x) = 0 (i = 1, . . . , r).

The standard techniques to solve (2) in the nonparametrized case involve moving randomly
from one sample point on \scrM to the next nearby, and fall under the umbrella term of Markov
chain Monte Carlo (MCMC) [12, 14, 15, 22, 26, 31, 33].

In this paper, we present a new method that solves (1) and (2) when the functions Fi

are polynomial. In simple terms, the method can be described as follows. First, we choose a
random linear subspace of complementary dimension and calculate its intersection with \scrM .
Since the implicit equations are polynomial, the intersection can be efficiently determined
using numerical polynomial equation solvers [4, 10, 17, 34, 40]. The number of intersection
points is finite and bounded by the degree of the system (1.1). Next, if we want to solve (1)
we evaluate a modified function f at each intersection point, sum its values, and repeat the
process to approximate the desired integral. Else if we want to solve (2), after a rejection step,
we pick one of the intersection points at random to be our sample point. We then repeat the
process to obtain more samples of the desired density.

Compared to MCMC sampling, our method has two main advantages. First, we have the
option to generate points that are independent of each other. Second, the method is global in
the sense that it also works when the manifold has multiple distinct connected components,
and does not require picking a starting point x0 \in \scrM .

The main theoretical result supporting the method is Theorem 1.1. It is in line with a
series of classical results commonly known as Crofton's formulas or kinematic formulas [38]
that relate the volume of a manifold to the expected number of its intersection points with
random linear spaces. Previous uses of such formulas in applications can be found in [8, 28,
29, 35]. Traditionally, one starts by sampling from the set of linear spaces intersecting a ball
containing \scrM . Our contribution is to suggest an alternative sampling method for linear spaces
\{ x \in \BbbR N | Ax = b\} , namely, by sampling (A, b) from the Gaussian distribution on \BbbR n\times N \times \BbbR n.
We argue in section 7 that our method is more exact and converges at least as quickly as the
above.

Until this point, we have assumed that \scrM is the set of nonsingular solutions to an im-
plicit system of polynomial equations (1.1). In fact, our main theorem also holds for open
submanifolds of such a set of solutions. We call them algebraic manifolds. Throughout this
article we fix an n-dimensional algebraic manifold \scrM \subset \BbbR N .

To state our result, we fix a measurable function f : \scrM \rightarrow \BbbR \geq 0 with finite integral over
\scrM . We define the auxiliary function f : \BbbR n\times N \times \BbbR n \rightarrow \BbbR as follows:

f(A, b) :=
\sum 

x\in \scrM :Ax=b

f(x)

\alpha (x)
, where \alpha (x) :=

\sqrt{} 
1 + \langle x,\Pi \mathrm{N}x\scrM x\rangle 
(1 + \| x\| 2)

n+1
2

\Gamma 
\bigl( 
n+1
2

\bigr) 
\surd 
\pi 

n+1

and where \Pi \mathrm{N}x\scrM : \BbbR N \rightarrow Nx\scrM denotes the orthogonal projection onto the normal space of
\scrM at x \in \scrM . Note that this projection can be computed from the implicit equations for \scrM ,
because Nx\scrM is the row-span of the Jacobian matrix J(x) = [\partial Fi

\partial xj
(x)]1\leq i\leq r,1\leq j\leq N . Therefore,

if Q \in \BbbR N\times r is the Q-factor from the QR-decomposition of J(x)T , then we have Nx\scrM = QQT .
This means that we can easily compute f(A, b) from \scrM \cap \scrL A,b.
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The operator f \mapsto \rightarrow f allow us to state the following main result, making our new method
precise.

Theorem 1.1. Let \varphi (A, b) be the probability density for which the entries of (A, b) \in \BbbR n\times N\times 
\BbbR n are independent and identically distributed (i.i.d.) standard Gaussian. In the notation
introduced above

(1) the integral of f over \scrM is the expected value of f :\int 
\scrM 
f(x) dx = \BbbE (A,b)\sim \varphi f(A, b);

(2) assume that f : \scrM \rightarrow \BbbR is nonnegative and that
\int 
\scrM f(x) dx is positive and finite.

Let X \in \scrM be the random variable obtained by choosing a pair (A, b) \in \BbbR n\times N \times \BbbR n with
probability

\psi (A, b) :=
\varphi (A, b) f(A, b)

\BbbE \varphi (f)

and choosing one of the finitely many points X of the intersection \scrM \cap \scrL A,b with probability
f(x)\alpha (x) - 1f(A, b) - 1. Then X is distributed according to the scaled density f(x)/(

\int 
\scrM f(x) dx)

associated with f(x).

Using the formula for \alpha (x) we can already evaluate f(A, b) for an integrable function f .
Thus we can approximate the integral of f by computing the empirical mean

E(f, k) = 1
k (f1(A, b) + \cdot \cdot \cdot + fk(A, b))

of a sample drawn from (A, b) \sim \varphi . The next lemma yields a bound for the rate of convergence
of this approach. It is an application of Chebyshev's inequality and proved in section 5.

Lemma 1.2. Assume that | f(x)| and \| x\| are bounded on \scrM . Then, the variance \sigma 2(f) of

f(A, b) is finite and for \varepsilon > 0 we have Prob\{ | E(f, k) - 
\int 
\scrM f(x) dx| \geq \varepsilon \} \leq \sigma 2(f)

\varepsilon 2k
.

In (5.1) we provide a deterministic bound for \sigma 2(f), which involves the degree of the
ambient variety of \scrM and upper bounds for \| x\| and | f(x)| on \scrM . In our experiments we
also use the empirical variance s2(f) of a sample for estimating \sigma 2(f).

For sampling (A, b) \sim \psi in the second part of Theorem 1.1 we could use MCMC sampling.
Note that this would employ MCMC sampling for the flat space \BbbR n\times N \times \BbbR n, which is easier
than MCMC for nonlinear spaces like \scrM . Nevertheless, in this paper we use the simplest
method for sampling \psi , namely, rejection sampling. This is used in the experiment section
and explained in section 3.3.

1.1. Outline. In section 2 of this paper, we show applications of this method to examples
in topological data analysis and statistical physics. We discuss preliminaries for the proof
of the main theorem in section 3 and give the full proof in section 4. In section 5 we prove
Lemma 1.2. We prove a variant of our theorems for projective algebraic manifolds in section
6. In section 7 we review other methods that make use of a kinematic formula for sampling.
Finally, in section 8 we briefly discuss the limitations of our method and possible future work.

1.2. Notation. The Euclidean inner product on \BbbR N is \langle x, y\rangle := xT y and the associated
norm is \| x\| :=

\sqrt{} 
\langle x, x\rangle . The unit sphere in \BbbR N is \BbbS N - 1 := \{ x \in \BbbR N : \| x\| = 1\} . For a
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Figure 2.1. Left picture: a sample of 200 points from the uniform distribution on the curve (2.1). Right
picture: a sample of 200 points from the uniform distribution scaled by e2y.

function f : \scrM \rightarrow \scrN between manifolds we denote by Dxf the derivative of f at x \in \scrM .
The tangent space of \scrM at x is denoted Tx\scrM and the normal space is Nx\scrM .

2. Experiments. In this section we apply our main results to examples. All experiments
have been performed on macOS 10.14.2 on a computer with Intel Core i5 2.3 GHz (two cores)
and 8 GB RAM memory. For computing the intersections with linear spaces, we use the
numerical polynomial equation solver HomotopyContinuation.jl [10]. For plotting we use
Matplotlib [25]. For sampling from the distribution \psi (A, b) we use rejection sampling as
described in section 3.3.

As a first simple example, we consider the plane curve \scrM given by the equation

(2.1) x4 + y4  - 3x2  - xy2  - y + 1 = 0.

We have vol(\scrM ) = \BbbE \varphi (1). We can therefore estimate the volume of the curve \scrM by taking a
sample of i.i.d. pairs (A, b) and computing the empirical mean E(1, k) of 1 of the sample. A
sample of k = 105 yields E(1, k) = 11.2. In Lemma 1.2 we take \varepsilon = 0.1 and the variance of the

sample s2, and get an upper bound of s2

\varepsilon 2k
= 0.008. Therefore, we expect that 11.2 is a good

approximation of the true volume. We can also take the deterministic upper bound from (5.1)
for the variance \sigma 2 of 1. Here, we take supx\in \scrM \| x\| =

\surd 
8. To get an estimate with accuracy

at least \varepsilon = 0.1 with probability at least 0.9 we need a sample of size k \geq \sigma 2

\varepsilon 2\cdot 0.9 \geq 1421300.
Taking such a sample size we get an estimated volume of \approx 11.217. The code that produced
this result is available at [2].

Next, we use the second part of Theorem 1.1 to generate random samples on \scrM ; code
is available at [3]. We show in the left picture of Figure 2.1 a sample of 200 points drawn
uniformly from the curve. The right picture shows 200 points drawn from the density given
by the normalization of f(x, y) = e2y. As can be seen from the pictures the points drawn
from the second distribution concentrate in the upper half of \scrM , whereas points from the first
distribution spread equally around the curve. This experiment also shows how our method
generates global samples. The curve has more than one connected component, which is not
an obstacle for our method.
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Figure 2.2. The blue points are a sample of 1569 points from the complex Trott curve (2.2) seen as a
variety in \BbbR 4 projected to \BbbR 3. The orange points are a sample of 1259 points from the real part of the Trott
curve.

Our method is particularly appealing for hypersurfaces like (2.1) because intersecting a
hypersurface with a linear space of dimension 1 reduces to solving a single univariate polyno-
mial equation. This can be done very efficiently, for instance, using the algorithm from [39],
and so for hypersurfaces we can easily generate large sample sets.

The pictures suggest we use sampling for visualization. For instance, we can visualize a
semialgebraic piece of the complex and real part of the Trott curve T , defined by the equation

(2.2) 144(x41 + x42) - 225(x21 + x22) + 350x21x
2
2 + 81 = 0.

The associated complex variety in \BbbC 2 can be seen as a real variety T\BbbC in \BbbR 4. We sample
from the real Trott curve T and the complex Trott curve T\BbbC intersected with the box  - 1.5 <
Real(x1), Imag(x1),Real(x2), Imag(x2) < 1.5. Then, we take a random projection \BbbR 4 \rightarrow \BbbR 3

to obtain a sample in \BbbR 3 (the projected sample is not uniform on the projected semialgebraic
variety). The outcome of this experiment is shown in Figure 2.2.

2.1. Application to statistical physics. In this section we want to apply Theorem 1.1
to study a physical system of N particles q = (q1, . . . , qN ) \in \scrM , where \scrM \subseteq (\BbbR 3)N is the
manifold that models the spacial constraints of the qi. In our example we have N = 6 and
the qi are the spacial positions of carbon atoms in a cyclohexane molecule. The constraints of
this molecule are the following algebraic equations:

(2.3) \scrM = \{ q = (q1, . . . , q6) \in (\BbbR 3)6 | \| q1  - q2\| 2 = \cdot \cdot \cdot = \| q5  - q6\| 2 = \| q6  - q1\| 2 = c2\} ,

where c is the bond length between two neighboring atoms (the vectors qi  - qi+1 are called
bonds). In our example we take c2 = 1 (unitless). Due to rotational and translational
invariance of the equations we define q1 to be the origin, q6 = (c, 0, 0), and q5 to be rotated,
such that its last entry is equal to zero. We thus have 11 variables.

Leli\`evre, Rousset, and Stoltz [32] write ``In the framework of statistical physics, macro-
scopic quantities of interest are written as averages over [...] probability measures on all the
admissible microscopic configurations."" As the probability measure we take the canonical en-
semble [32]. If E(q) denotes the total energy of a configuation q, the density in the canonical
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ensemble is proportional to f(q) = e - E(q). That is, a configuration is most likely to appear
when its energy is minimal. We model the energy of a molecule using an interaction potential,
namely, the Lennard-Jones potential V (r) = 1

4 (
c
r )

12  - 1
2 (

c
r )

6; see, e.g., [32, equation (1.5)].
Then, the energy function of a system is

E(q) =
\sum 

1\leq i<j\leq N

V (\| qi  - qj\| ).

In this example we consider as the quantity the average angle between neighboring bonds
qi - 1  - qi and qi+1  - qi:

\theta (q) =
\angle (q6  - q1, q2  - q1) + \cdot \cdot \cdot + \angle (q5  - q6, q1  - q6)

6
,

where \angle (b1, b2) := arccos \langle b1,b2\rangle 
\| b1\| \| b2\| . We compute the macroscopic state of \theta (q) by determining

its distribution Prob\{ \theta (q) = \theta 0\} = 1
H

\int 
\theta (q)=\theta 0

f(q)dq, where H =
\int 
V f(q)dq is the normalizing

constant. For comparing the probabilities of different values for \theta it suffices to compute

\rho (\theta 0) =

\int 
\theta (q)=\theta 0

f(q)dq.

We approximate this integral as \rho (\theta 0) \approx \mu 1(\theta 0)
\mu 2(\theta 0)

, where

\mu 1(\theta 0) =

\int 
\theta (q)>\theta 0 - \Delta \theta 
\theta (q)<\theta 0+\Delta \theta 

f(q) dq and \mu 2(\theta 0) =

\int 
\theta (q)>\theta 0 - \Delta \theta 
\theta (q)<\theta 0+\Delta \theta 

1 dq

for some \Delta \theta > 0 (in our experiment we take \Delta \theta = 3\circ ), and we approximate both \mu 1(\theta 0)
and \mu 2(\theta 0) for several values of \theta by their empirical means E(f, k) and E(1, k), and using
Theorem 1.1. We take k = 104 samples, respectively. The code for this is available at [1].

Figure 2.3 shows both the values of the empirical means in the logarithmic scale and the
ratio of \mu 1(\theta 0) and \mu 2(\theta 0).

The left picture shows the approximations of \mu 1(\theta 0) and \mu 2(\theta 0) by the empirical means
E(f, k) and E(1, k). Both integrals were approximated independently, each by an empirical
mean obtained from 104 intersections with linear spaces. The right picture shows the ratio of
the empirical means, which approximate \rho (\theta 0).

How good is our estimate? From the plot above we can deduce that \varepsilon = 102 is a good
accuracy for both \mu 1(\theta 0) and \mu 2(\theta 0). Using the variances s

2
1 and s

2
2 of the samples, respectively,

we get
s21
\varepsilon 2k

\leq 0.002 and
s22
\varepsilon 2k

\leq 0.002. Hence, by Lemma 1.2 we expect that the probability
that the empirical mean E(f, k) deviates from \mu 1(\theta 0) by more than \varepsilon and that the probability
that E(1, k) deviates from \mu 2(\theta 0) by more than \varepsilon are both at most 0.2\%. We conclude that
our approximation of \rho (\theta ) = H Prob\{ \theta (q) = \theta 0\} is a good approximation.

In fact, Figure 2.3 shows a peak at around \theta = 114\circ . It is known that the total energy
of the cyclohexane system is minimized when all angles between consecutive bonds achieve
110.9\circ ; see [11, Chapter 2]. Therefore, our experiment truly gives a good approximation of
the molecular geometry of cyclohexane. An example where all the angles between consecutive
bonds are 110.9\circ is shown in Figure 2.4.
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Figure 2.3. The left picture shows the approximations of \mu 1(\theta 0) and \mu 2(\theta 0) by the empirical means E(f, k)
and E(1, k). Both integrals were approximated independently, each by an empirical mean obtained from 104

intersections with linear spaces. The right picture shows the ratio of the empirical means, which approximate
\rho (\theta 0).

Figure 2.4. The picture shows a point from the variety (2.3), for which the angles between two consecutive
bonds are all equal to 110.9\circ degrees. This configuration is also known as the ``chair"" [9].

2.2. Application to topological data analysis. We believe that Theorem 1.1 will be useful
for researchers working in topological data analysis using persistent homology (PH). PH is
a tool to estimate the homology groups of a topological space from a finite point sample.
The underlying idea is as follows: for varying t, put a ball of radius t around each point and
compute the homology of the union of those balls. One then looks at topological features that
persist for large intervals in t. It is intuitively clear that the point sample should be large
enough to capture all of the topological information of its underlying space and, on the other
hand, the sample should be small enough to remain feasible for computations. Dufresne et
al. [18] comment ``Both the theoretical framework for the PH pipeline and its computational
costs drive the requirements of a suitable sampling algorithm."" (For an explanation of the PH
pipeline, see [18, section 2] and the references therein.) They develop an algorithm that takes
as input a denseness parameter \epsilon and outputs a sample where each point has at most distance
\epsilon to its nearest neighbor. At the same time, their method is trying to keep the sample size
as small as possible. In the context of topological data analysis we see our algorithm as an
alternative to [18].
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Figure 2.5. The left picture shows a sample of 386 points from the variety (2.4). The right picture shows
the corresponding persistence diagram.

In the following we use Theorem 1.1 for generating samples as input for the PH pipeline
from [18]. The output of this pipeline is a persistence diagram. It shows the appearance
and the vanishing of topological features in a 2-dimensional plot. Each point in the plot
corresponds to an i-dimensional ``hole,"" where the x-coordinate represents the time t when
the hole appears, and the y-coordinate is the time when it vanishes. Points that are far from
the line x = y should be interpreted as signals coming from the underlying space. The number
of those points is used as an estimator for the Betti number \beta i. For computing persistence
diagrams we use Ripser [5].

First, we consider two toy examples from [18, section 5]: the surface \scrS 1 is given by

(2.4) 4x41 +7x42 +3x43  - 3 - 8x31 +2x21x2  - 4x21  - 8x1x
2
2  - 5x1x2 +8x1  - 6x32 +8x22 +4x2 = 0.

Figure 2.5 shows a sample of 386 points from the uniform distribution on \scrS 1. The asso-
ciated persistence diagram suggest one connected component, two 1-dimensional and two
2-dimensional holes. The latter two come from two sphere-like features of the variety. The
outcome is similar to the diagram from [18, Figure 6]. Considering that the diagram in this
reference was computed using 1500 points [20], we think that the quality of our diagram is
good.

The second example is the surface \scrS 2 given by

144(x41+x
4
2) - 225(x21+x

2
2)x

2
3+350x21x

2
2+81x43+x

3
1+7x21x2+3(x21+x1x

2
2) - 4x1 - 5(x32 - x22 - x2) = 0.

Figure 2.6 shows a sample of 651 points from the uniform distribution on \scrS 2. The persistence
diagram on the right suggest one or five connected components. The true answer is five
connected components. The diagram from [18, Figure 6] captures the correct homology more
clearly, but was generated from a sample of 10000 points [20].

The next example is from a specific application in kinematics. We quote [18, section 5.3]
``Consider a regular pentagon in the plane consisting of links with unit length, and with one
of the links fixed to lie along the x-axis with leftmost point at (0, 0). The set of all possible
configurations of this regular pentagon is a real algebraic variety."" The equations of the
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Figure 2.6. The left picture shows a sample of 651 points from the variety \scrS 2. The right picture shows the
corresponding persistence diagram.

Figure 2.7. The picture shows the persistence diagram of a sample of 1400 points from the variety given
by (2.5).

configuration space are

(2.5) (x1 + x2 + x3)
2 + (1 + x4 + x5 + x6)

2  - 1 = 0, x21 + x24 = 1, x22 + x25 = 1, x23 + x26 = 1.

Here, the zeroth homology is of particular importance because, if the variety is connected,
``the mechanism has one assembly mode which can be continuously deformed to all possible
configurations"" [18]. Figure 2.7 shows the persistence diagram of a sample of 1400 points
from the configuration space. It suggests that the variety indeed has only one connected
component. We moreover observe eigth holes of dimension 1 and one or three 2-dimensional
holes. The correct Betti numbers are \beta 0 = 1, \beta = 1 = 8, \beta 2 = 1; see [21].

3. Preliminaries. In this section we first define the degree of a real algebraic variety
and explain why the number of intersection points of \scrM with a linear space of the right
codimension does not exceed the degree of its ambient variety. Then, we recall the coarea
formula of integration and discuss some consequences. Finally, we explain how to sample from
\psi (A, b) using rejection sampling and we prove an algorithm for sampling \scrL A,b in implicit form.
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3.1. Real algebraic varieties. For the purpose of this paper, a (real, affine) algebraic
variety is a subset \scrV of \BbbR N such that there exists a set of polynomials F1, . . . , Fk in N
variables such that \scrV is their set of common zeros. All varieties have a dimension and a
degree. The dimension of \scrV is defined as the dimension of its subspace of nonsingular points
\scrV 0, which is a manifold. For the degree we give a definition in the following steps.

An algebraic variety \scrV in \BbbR N is homogeneous if for all t \in \BbbR \setminus \{ 0\} and x \in \scrV we have
tx \in \scrV . Homogeneous varieties are precisely the ones where we can choose the Fi above to be
homogenous polynomials. Naturally, homogeneous varieties live in the (N - 1)-dimensional real
projective space \BbbP N - 1. This space is defined as the set (\BbbR N \setminus \{ 0\} )/ \sim , where x \sim y if x and y
are collinear. It comes with a canonical projection map p : (\BbbR N \setminus 0) \rightarrow \BbbP N - 1. Then, a projective
variety is defined as the image of a homogeneous variety \scrV under p. Its dimension is dim\scrV  - 1.

Similarly, we define complex affine, homogeneous, and projective varieties by replacing \BbbR 
with \BbbC in the previous definitions. We can pass from real to complex varieties as follows. Let
\scrV \subset \BbbR N be a real affine variety. Its complexification \scrV \BbbC is defined as the complex affine variety

\scrV \BbbC := \{ x \in \BbbC n : f(x) = 0 for all real polynomials f vanishing on \scrV \} .

The ``all"" is crucial here. Consider, for instance, the variety in \BbbR 2 defined by x21 + x22 =
0. Obviously, this variety is a single point \{ (0, 0)\} , but \{ x \in \BbbC 2 : x21 + x22 = 0\} =
\{ (t,

\surd 
 - 1 t) : t \in \BbbC \} is one dimensional. Nevertheless, the polynomials x1 = 0, x2 = 0 also

vanish on \{ (0, 0)\} and so the complexification of \scrV = \{ (0, 0)\} is \scrV \BbbC = \{ (0, 0)\} . The following
lemma is important.

Lemma 3.1 (see [41, Lemma 8]). The real dimension of \scrV and the complex dimension of
its complexification \scrV \BbbC agree.

The Grassmannian is a smooth algebraic variety G(k,\BbbC N ) that parametrizes linear sub-
spaces of \BbbC N of dimension k. Furthermore, k-dimensional affine-linear subspaces of \BbbC N can
be seen as (k + 1)-dimensional linear subspaces of \BbbC N+1 and are parametrized by the affine
Grassmannian G\mathrm{A}ff(k,\BbbC N ). A projective linear space of dimension k is the image of a linear
space \scrL \in G(k + 1,\BbbC N ) under the projection p. This motivates us to define the projective
Grassmannian as G(k,\BbbP N - 1) := \{ p(\scrL ) : \scrL \in G(k + 1,\BbbC N )\} .

Now, we have gathered all the material to give a precise definition of the degree: let
\scrV \subset \BbbP N - 1

\BbbC be a complex projective variety of dimension n. There exists a unique natural
number d and a lower-dimensional subvariety \scrW of G(N  - n,\BbbP N - 1) with the property that
for all linear spaces \scrL \in G(N  - n,\BbbP N - 1)\setminus \scrW the intersection \scrV \cap \scrL consists of d distinct
points [23, section 18]. Furthermore, the number of such intersection points only decreases
when \scrL \in \scrW . This number d is called the degree of the projective variety \scrV . The degree of
a complex affine variety \scrV \subset \BbbC N is defined as the degree of the smallest projective variety
containing the image of \scrV under the embedding \BbbC N \lhook \rightarrow \BbbP N

\BbbC sending x to p([1, x]).
The definition of degree of complex varieties is standard in algebraic geometry. In this

article, however, we are solely dealing with real varieties. We therefore make the following
definition, which is not standard in the literature, but which fits in our setting.

Definition 3.2. The degree of a real affine variety \scrV is the degree of its complexification.
The degree of a real projective variety \scrV is the degree of the image of the complexification of
p - 1(\scrV ) under p.
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Using Lemma 3.1 we make the following conclusions, after passing from the Grassmannians
G\mathrm{A}ff(N  - n,\BbbR N ) and G(N  - n,\BbbR N ) to the parameter spaces \BbbR n\times N \times \BbbR n and \BbbR n\times N .

Lemma 3.3. Let \scrV \subset \BbbR N be an affine variety of dimension n and degree d. Except for a
lower-dimensional subset of \BbbR n\times N \times \BbbR N , all affine linear \scrL A,b = \{ x \in \BbbR N : Ax = b\} \subset \BbbR N

intersect \scrV in at most d many points.
Let \scrV \subset \BbbP N - 1 be a projective variety of dimension n and degree d. Except for a lower-

dimensional subset of \BbbR n\times N , all linear subspaces \scrL A = \{ x \in \BbbP N - 1 : Ax = 0\} \subset \BbbP N - 1 intersect
\scrV in at most d many points.

3.2. The coarea formula. The coarea formula of integration is a key ingredient in the
proof of the main theorems. This formula says how integrals transform under smooth maps.
A well-known special case is integration by substitution. The coarea formula generalizes this
from integrals defined on the real line to integrals defined on differentiable manifolds.

Let \scrM ,\scrN be Riemannian manifolds and dv, dw be the respective volume forms. Further-
more, let h : \scrM \rightarrow \scrN be a smooth map. A point v \in \scrM is called a regular point of h if Dvh
is surjective. Note that a necessary condition for regular points to exist is dim\scrM \geq dim\scrN .

For any v \in \scrM the Riemannian metric on \scrM defines orthogonality on Tv\scrM . For a regular
point v of h this implies that the restriction of Dvh to the orthogonal complement of its kernel
is a linear isomorphism. The absolute value of the determinant of that isomorphism is the
normal Jacobian of h at v. Let us summarize this in a definition.

Definition 3.4. Let h : \scrM \rightarrow \scrN be a smooth map and v \in \scrM be a regular point of h.
Let ( \cdot )\bot denote the orthogonal complement. The normal Jacobian of h at v is defined as

NJ(h, v) :=
\bigm| \bigm| \bigm| det\Bigl( Dvh | (\mathrm{k}\mathrm{e}\mathrm{r}\mathrm{D}vh )\bot 

\Bigr) \bigm| \bigm| \bigm| .
We also need the following theorem (see, e.g., [13, Theorem A.9]).

Theorem 3.5. Let \scrM ,\scrN be smooth manifolds with dim\scrM \geq dim\scrN and let h : \scrM \rightarrow \scrN be
a smooth map. Let w \in \scrN be such that all v \in h - 1(w) are regular points of h. Then, the fiber
h - 1(w) over w is a smooth submanifold of \scrM of dimension dim\scrM  - dim\scrN and the tangent
space of h - 1(w) at v is Tvh

 - 1(w) = kerDvh .

A point w \in \scrN satisfying the properties in the previous theorem is called a regular value
of h. By Sard's lemma the set of all w \in \scrN that are not a regular value of h is a set of measure
zero. We are now equipped with all we need to state the coarea formula. See [24, (A-2)] for
a proof.

Theorem 3.6 (the coarea formula of integration). Suppose that \scrM ,\scrN are Riemannian
manifolds, and let h : \scrM \rightarrow \scrN be a surjective smooth map. Then we have for any function
a : \scrM \rightarrow \BbbR that is integrable with respect to the volume measure of \scrM that\int 

v\in \scrM 
a(v) dv =

\int 
w\in \scrN 

\Biggl( \int 
u\in h - 1(w)

a(u)

NJ(h, u)
du

\Biggr) 
dw,

where du is the volume form on the submanifold h - 1(w).

The following corollary from the coarea formula is important.
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Corollary 3.7. Let h : \scrM \rightarrow \scrN be a smooth surjective map of Riemannian manifolds.
(1) Let X be a random variable on \scrM with density \beta . Then h(X) is a random variable

on \scrN with density

\gamma (y) =

\int 
x\in h - 1(y)

\beta (x)

NJ(h, x)
dx.

(2) Let \psi be a density on \scrN and for all y \in \scrN , let \rho y be a density on h - 1(y). The random
variable X on \scrM obtained by independently taking Y \in \scrN with density \psi and X \in h - 1(Y )
with density \rho Y has density

\beta (x) = \psi (h(x))\rho h(x)(x)NJ(h, x).

Proof. The first part follows directly from the coarea formula. For the second part, it
suffices to note that for measurable \scrU \subset \scrM we have\int 

y\in h(\scrU )

\int 
x\in h - 1(y)\cap \scrU 

\psi (h(x))\rho h(x)(x) dx dy =

\int 
y\in h(\scrU )

\int 
x\in h - 1(y)\cap \scrU 

\beta (x)

NJ(h, x)
dx dy

=

\int 
x\in \scrU 

\beta (x) dx;

see also [13, Remark 17.11].

3.3. Sampling from the density on affine-linear subspaces. Our method for sampling
from an algebraic manifold involves taking a distribution \varphi on the parameter space \BbbR n\times N\times \BbbR n

of hyperplanes of the right dimension which is easy to sample, and turning it into another
density \psi . In this section, we explain how to sample from \psi with rejection sampling. In the
following we denote elements of \BbbR n\times N \times \BbbR n by (A, b).

Proposition 3.8. Let \kappa be any number satisfying 0 < \kappa \cdot sup(A,b) f(A, b) \leq 1. Consider the

binary random Z \in \{ 0, 1\} with Prob\{ Z = 1 | (A, b)\} = \kappa f(A, b). Then, \psi is the density of the
conditional random variable ((A, b) | Z = 1).

Proof. We denote the density of the conditional random variable ((A, b) | Z = 1) by
\lambda . Bayes' theorem implies \lambda (A, b) Prob\{ Z = 1\} = Prob\{ Z = 1 | (A, b)\} \varphi (A, b), which, by
assumption, is equivalent to

\lambda (A, b) =
\kappa f(A, b)\varphi (A, b)

Prob\{ Z = 1\} 
.

By the definition of Z we have Prob\{ Z = 1\} = \kappa \BbbE (A,b)\sim \varphi f(A, b). Hence,

\lambda (A, b) =
f(A, b)\varphi (A, b)

\BbbE (A,b)\sim \varphi f(A, b)
= \psi (A, b).

This finishes the proof.

Proposition 3.8 shows that \psi is the density of a conditional distribution. A way to sample
from such distributions is by rejection sampling: for sampling ((A, b) | Z = 1) we may sample
from the joint distribution (A, b, Z) and then keep only the points with Z = 1. The strong
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law of large numbers implies the correctness of rejection sampling. Indeed, if (Ai, bi, Zi) is a
sequence of i.i.d. copies of (A, b, Z) and \scrU is a measurable set with respect to the Lebesgue
measure on \BbbR n\times N \times \BbbR n, then we have

\#\{ i | (Ai, bi) \in \scrU , Zi = z, i \leq n\} 
\#\{ i | Zi = z, i \leq n\} 

=
1
n \#\{ i | (Ai, bi) \in \scrU , Zi = z, i \leq n\} 

1
n \#\{ i | Zi = z, i \leq n\} 

\mathrm{a}.\mathrm{s}. -  - \rightarrow Prob\{ (A, b) \in \scrU , Z = z\} 
Prob\{ Z = z\} 

= Prob
(A,b)| Z=z

(\scrU ).

For sampling Z, however, we must compute a suitable \kappa . This can be done as follows. Let
d be the degree of the ambient variety of \scrM . We assume we know upper bounds K for f(x)
and C for \| x\| 2, both as x ranges over \scrM , and set

\kappa =
1

dK

\Gamma (n+1
2 )

\surd 
\pi 

n+1

1

(1 + C)
n+1
2

.

Then we have 0 < \kappa f(A, b) \leq 1 for all (A, b) as needed. With \kappa , we have everything we need
to carry out the sampling method.

How to obtain the upper bounds K and C? For K, we might just know the maximum of f .
For example, if we want to sample from the uniform distribution, then we may use f = 1. In
more complicated cases, we could approximate max f by repeatedly sampling (A, b) \sim \varphi and
recording the highest value f takes on the points in the intersection \scrM \cap \scrL (A,b). Casella and
Robert [16] call this approach stochastic exploration.

We might know C a priori, for example, because we restrict the manifold \scrM to a box in
\BbbR N . We can also restrict the manifold to a box after determining by sampling what the size
of the box should be. We could also estimate max \| x\| 2 by sampling as for max f . Sometimes
we can also use semidefinite programming [6] to bound polynomial functions like \| x\| 2 on a
variety. Note that the probability for rejection increases as C increases. We thus seek to find
a C which is as small as possible. If our given function f is invariant under translation, we
may translate \scrM to decrease C. For instance, sampling from the uniform distribution on the
circle (x1 - 100)2+(x2 - 100)2 = 1 is the same as sampling on x21+x

2
1 = 1 and then translating

by adding (100, 100) to each sample point. The difference between the two is that for the first
variety we need C = 101, whereas for the second we can use C = 1.

3.4. Sampling linear spaces in explicit form. Sometimes it is useful to sample the linear
space \scrL A,b in explicit form, and not in implicit form Ax = b. For instance, if \scrV is a hypersurface
given by an equation F (x) = 0, then intersecting \scrV with a line u+ tv can be done by solving
the univariate equation F (u + tv) = 0. The next lemma shows how to pass from implicit to
explicit representation in the Gaussian case.

Lemma 3.9. Let \scrL A,b = \{ x \in \BbbR N | Ax = b\} be a random affine linear space given by i.i.d.
standard Gaussian entries for A \in \BbbR n\times N and b \in \BbbR n. Consider another random linear space

\scrK u,v1,...,vN - m = \{ u+ t1v1 + \cdot \cdot \cdot + tN - nvN - n | t1, . . . , tN - n \in \BbbR \} ,
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where u, v1, . . . , vN - m are obtained as follows. Sample a matrix U \in \BbbR (N - n+1)\times (N+1) with
i.i.d. standard Gaussian entries, and let\biggl( 

u
1

\biggr) 
,

\biggl( 
v1
0

\biggr) 
, . . . ,

\biggl( 
vN - n

0

\biggr) 
\in rowspan(U).

Then, we have \scrK u,v1,...,vN - m \sim \scrL A,b.

Proof. Consider the linear space \widetilde \scrL A,b := \{ z \in \BbbR N+1 | [A, - b]z = 0\} . This is a random
linear space in the Grassmannian G(N + 1  - n,\BbbR N+1). The affine linear space is given as
\scrL A,b := \{ u+ t1v1 + \cdot \cdot \cdot + tN - nvN - n\} , where\biggl( 

u
1

\biggr) 
,

\biggl( 
v1
0

\biggr) 
, . . . ,

\biggl( 
vN - n

0

\biggr) 
\in ker([A, - b]).

Now the kernel of [A, - b] is a random linear space in G(n,\BbbR N+1), which is invariant under
orthogonal transformations. By [30] there is a unique orthogonally invariant probability dis-
tribution on the Grassmannian G(n,\BbbR N+1). Since rowspan(U) is also orthogonally invariant,
we find that rowspan(U) \sim ker([A, - b]), which concludes the proof.

4. Proof of Theorem 1.1. We begin by giving an alternate description of the function
\alpha (x).

Lemma 4.1. \alpha (x) =
\int 
A\in \BbbR n\times N \varphi (A,Ax)| det(A| \mathrm{T}x\scrM )| dA.

Proof. Let \alpha \prime (x) be the right-hand side of the formula. Let U \in O(N) be an orthogonal
matrix such that Ux = (0, . . . , 0, xN )T and consider the manifold \scrN = U \cdot \scrM . We have
TUx\scrN = UTx\scrM and det(A| \mathrm{T}x\scrM ) = det(AUT

\bigm| \bigm| 
\mathrm{T}Ux\scrN 

). After the change of variables A \mapsto \rightarrow AUT

we get

\alpha \prime (x) =

\int 
A\in \BbbR n\times N

\bigm| \bigm| \bigm| det(A| \mathrm{T}Ux\scrN )
\bigm| \bigm| \bigm| \varphi (A,AUx) dA.

By definition of the Gaussian density, we have \varphi (A,AUx) = 1
(
\surd 
2\pi )n

\phi (AR), where \phi is the

Gaussian density on \BbbR n\times N and R = diag(1, . . . , 1,
\sqrt{} 
1 + x2N ) \in \BbbR N\times N . Let us write B = AR.

A change of variables from A to B yields

\alpha \prime (x) =
1

(1 + x2N )
n
2 (

\surd 
2\pi )n

\int 
B\in \BbbR n\times N

\bigm| \bigm| \bigm| det(BR - 1
\bigm| \bigm| 
\mathrm{T}Ux\scrN 

)
\bigm| \bigm| \bigm| \phi (B) dB.

Let W \in \BbbR N\times n be a matrix whose columns form an orthonormal basis for TUx\scrN and write
M := R - 1W . Then we have det(BR - 1

\bigm| \bigm| 
\mathrm{T}Ux\scrN 

) = det(BM) and so

\alpha \prime (x) =
1

(1 + x2N )
n
2

\surd 
2\pi 

n \BbbE 
B\sim \phi 

| det(BM)| .

We now write \BbbE B\sim \phi | det(BM)| = \BbbE B\sim \phi det(M
TBTBM)

1
2 . By [37, Theorem 3.2.5] the matrix

C :=MTBTBM \in \BbbR n\times n is a Wishart matrix with covariance matrixMTM . By [37, Theorem
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3.2.15], we have \BbbE det(C)
1
2 = det(MTM)

1
2

1\surd 
\pi 

\surd 
2
n
\Gamma (n+1

2 ). Altogether, this shows that

\alpha \prime (x) =
det(MTM)

1
2

(1 + x2N )
n
2

\Gamma 
\bigl( 
n+1
2

\bigr) 
\surd 
\pi 

n+1 .

Moreover, we have

MTM =W TR - TR - 1W

=W T diag
\Bigl( 
1, . . . , 1, 1

1+x2
N

\Bigr) 
W

= 1 - 1
1+x2

N
W diag(0, . . . , 0, x2N )W.

The second summand in the last expression is a rank-one matrix with the single nonzero

eigenvalue  - | | WTUx| | 2
1+| | Ux| | 2 . Taking determinants we get

det(MTM) = 1 - | | W TUx| | 2

1 + | | Ux| | 2
=

1 + | | Ux| | 2  - | | W TUx| | 2

1 + | | Ux| | 2
=

1 + | | x| | 2  - | | \Pi \mathrm{T}x\scrM x| | 2

1 + | | x| | 2
,

where \Pi \mathrm{T}x\scrM denotes the orthogonal projection onto the tangent space. Since we have | | x| | 2 - 
| | \Pi \mathrm{T}x\scrM x| | 2 = \langle x,\Pi \mathrm{N}x\scrM x\rangle , this implies

\alpha \prime (x) =

\sqrt{} 
1 + \langle x,\Pi \mathrm{N}x\scrM x\rangle 
(1 + x2N )

n+1
2

\Gamma 
\bigl( 
n+1
2

\bigr) 
\surd 
\pi 

n+1 = \alpha (x).

This concludes the proof.

We are now prepared to prove Theorem 1.1.

Proof of Theorem 1.1. We first prove the first part. The support of f(A, b) is a full di-
mensional subset of \BbbR n\times N \times \BbbR n and it is contained in the complement of the set of all (A, b)
for which \scrM \cap \scrL A,b = \emptyset . We let \scrX denote the interior of the support of f(A, b), so that
\BbbE (A,b)\sim \varphi f(A, b) =

\int 
\scrX f(A, b)\varphi (A, b)d(A, b).

Let \pi : \BbbR n\times N\times \scrM \rightarrow \scrX be the map sending a pair (A, x) to (A,Ax). We have D(A,x)\pi ( \.A, \.x)

= ( \.A, \.Ax + A \.x), so the derivative of \pi can be identified with the matrix
\bigl( 
\bfone 0
\ast A

\bigr) 
. This shows

that NJ(\pi , (A, x)) = | det(A| \mathrm{T}x\scrM )| . Therefore, by Theorem 3.6,

\BbbE 
(A,b)\sim \varphi 

f(A, b) =

\int 
\BbbR n\times N\times \scrM 

f(x)

\alpha (x)
| det(A| \mathrm{T}x\scrM )| \varphi (A,Ax) d(A, x).

The projection \BbbR n\times N \times \scrM \rightarrow \scrM on the second factor has normal Jacobian one everywhere.
Applying Theorem 3.6 again yields

\BbbE 
(A,b)\sim \varphi 

f(A, b) =

\int 
\scrM 

f(x)

\alpha (x)

\biggl( \int 
\BbbR n\times N

| det(A| \mathrm{T}x\scrM )| \varphi (A,Ax) dA
\biggr) 
dx =

\int 
\scrM 
f(x)dx,

the second inequality by Lemma 4.1. This proves the first part.
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Now, we prove the second part, where we assume that f : \scrM \rightarrow \BbbR >0 is nonnegative.

Recall that \psi (A, b) = \varphi (A,b)f(A,b)

\BbbE \varphi (f)
. Since \BbbE \varphi (f) =

\int 
\scrM f(x)dx is positive and finite by the first

part of the theorem, we find that \psi is a well-defined probability density. The support of \psi is
contained in the closure of \scrX and therefore \scrM \cap \scrL A,b is almost surely nonempty and finite.

Let Y = (A, x) \in \BbbR n\times N \times \scrM be the random variable defined by first choosing (A, b) \sim 
\psi and then taking x \in \scrM \cap \scrL A,b with probability f(x)\alpha (x) - 1f(A, b) - 1. By construction,
\pi (Y ) \sim \psi . We use Corollary 3.7(2) and find that Y has density

\beta (A, x) =
\psi (A,Ax)f(x)NJ(\pi , (A, x))

\alpha (x)f(A,Ax)
.

Recall that NJ(\pi , (A, x)) = | det(A| \mathrm{T}x\scrM )| and that the projection \BbbR n\times N \times \scrM \rightarrow \scrM on the
second factor has normal Jacobian one everywhere. Therefore, by Corollary 3.7(1), the random
point x \in \scrM has density \gamma with

\gamma (x) =

\int 
A\in \BbbR n\times N

\beta (A, x) dA

=
f(x)

\alpha (x)

\int 
A\in \BbbR n\times N

\psi (A,Ax)| det(A| \mathrm{T}x\scrM )| 
f(A,Ax)

dA

=
f(x)

\alpha (x)\BbbE \varphi (f)

\int 
A\in \BbbR n\times N

\varphi (A,Ax)| det(A| \mathrm{T}x\scrM )| dA.

Using Lemma 4.1 yields \gamma (x) = f(x)

\BbbE \varphi (f)
. This finishes the proof of Theorem 1.1.

5. Proof of Lemma 1.2. First, we can bound \alpha (x) \geq 1
1+\mathrm{s}\mathrm{u}\mathrm{p}x\in \scrM \| x\| 2

\Gamma (n+1
2 )

\surd 
\pi 

n+1 . Let d be the

degree of the ambient variety of \scrM . With probability one \scrM \cap \scrL A,b consists of at most d
points and so we have

\BbbE 
(A,b)\sim \varphi 

f(A, b)2 = \BbbE 
(A,b)\sim \varphi 

\left(  \sum 
x\in \scrM \cap \scrL A,b

f(x)

\alpha (x)

\right)  2

\leq \BbbE 
(A,b)\sim \varphi 

\left(  \sum 
x\in \scrM \cap \scrL A,b

| f(x)| 
\alpha (x)

\right)  2

\leq \BbbE 
(A,b)\sim \varphi 

\left(  \sum 
x\in \scrM \cap \scrL A,b

supx\in \scrM | f(x)| 
infx\in \scrM \alpha (x)

\right)  2

\leq d2
\biggl( 
1 + sup

x\in \scrM 
\| x\| 2

\biggr) n+1 \pi n+1

\Gamma 
\bigl( 
n+1
2

\bigr) 2 sup
x\in \scrM 

f(x)2.

We also have \sigma 2(f) \leq \BbbE (A,b)\sim \varphi f(A, b)
2 and, therefore,

(5.1) \sigma 2(f) \leq d2
\biggl( 
1 + sup

x\in \scrM 
\| x\| 2

\biggr) n+1 \pi n+1

\Gamma 
\bigl( 
n+1
2

\bigr) 2 sup
x\in \scrM 

f(x)2
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is finite. We may therefor use Chebyshev's inequality to deduce that

(5.2) Prob

\biggl\{ \bigm| \bigm| \bigm| \bigm| E(f, k) - \int 
\scrM 
f(x) dx

\bigm| \bigm| \bigm| \bigm| \geq \varepsilon 

\biggr\} 
\leq \sigma 2(f)

\varepsilon 2k
.

This finishes the proof.

6. Sampling from projective manifolds. In this section we prove variations of Theo-
rem 1.1 for projective algebraic manifolds.

Real projective space \BbbP N - 1 from section 3 is a compact Riemannian manifold with a
canonical metric, the Fubini--Study metric. Namely, let p : \BbbR N\setminus \{ 0\} \rightarrow \BbbP N - 1 be the canonical
projection. Restricted to the unit sphere \BbbS N - 1, the projection p identifies antipodal points.
We define a subset \scrU \subset \BbbP N - 1 to be open if and only if p|  - 1

\BbbS N - 1 (\scrU ) is open. This gives \BbbP N - 1

the structure of a differential manifold. The Riemannian structure on \BbbP N - 1 is defined as
\langle \.a, \.b\rangle := \langle Dxp

 - 1 \.a,Dxp
 - 1 \.b\rangle for \.a, \.b \in Tx\BbbP N - 1. This metric is called the Fubini--Study metric,

and it induces the standard measure on \BbbP N - 1.
We say that \scrM is a projective algebraic manifold if it is an open submanifold of the smooth

part of a real projective variety \scrV \subset \BbbP N - 1. We assume \scrM to be n-dimensional, and consider
a function f : \scrM \rightarrow \BbbR \geq 0 with a well-defined scaled probability density f(x)/

\int 
\scrM f(x)dx. For

A \in \BbbR n\times N , define the linear space \scrL A = \{ x \in \BbbP N - 1 | Ax = 0\} and write

f(A) :=
\sum 

x\in \scrM \cap \scrL A

f(x).

In this section, we denote by \varphi \ell the density of the multivariate standard normal distribution
on \BbbR \ell .

Theorem 6.1. In the notation introduced above,
(1) let f be an integrable function on \scrM . We have\int 

\scrM 
f(x) d(x) = vol(\BbbP n) \BbbE 

A\sim \varphi n\times N

f(A);

(2) let f be nonnegative and assume that the integral
\int 
\scrM f(x) d(x) is finite and nonzero.

Let X \in \scrM be the random variable obtained by choosing A \in \BbbR n\times N with probability \psi (A) :=
\varphi (A) f(A)

\BbbE A\sim \varphi n\times N
f(A)

and one of the finitely many points X \in \scrM \cap \scrL A with probability f(x)/f(A).

Then X is distributed accordding to the density f(x)/
\int 
\scrM f(x)dx.

Remark 6.2. In [27, section 2.4] Lairez proved a similar theorem for the uniform distribu-
tion on complex projective varieties.

Sampling \scrL A with A \sim \varphi n\times N yields a special distribution on the Grassmannian
G(N  - n - 1,\BbbP N - 1). By [30] there is unique orthogonally invariant probability measure \nu on
G(N - n - 1,\BbbP N - 1). Since the distribution of the kernel of a Gaussian A is invariant under or-
thogonal transformations, the projective plane \scrL A = \{ x \in \BbbP N - 1 : Ax = 0\} has distribution \nu .

Furthermore, setting f = 1 in Theorem 6.1 gives the formula

vol(\scrM ) = vol(\BbbP n) \BbbE 
A\sim \varphi n\times N

| \scrM \cap \scrL A| .

This is the kinematic formula for projective manifolds from [24, Theorem 3.8] in disguise.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

700 PAUL BREIDING AND ORLANDO MARIGLIANO

Before we can prove Theorem 6.1, we have to prove an auxiliary lemma, similar to
Lemma 4.1.

Lemma 6.3. For any x \in \scrM we have\int 
A\in \BbbR n\times N :Ax=0

| det(A| \mathrm{T}x\scrM )| \varphi n\times N (A) dA =
1

vol(\BbbP n)
.

In particular, the integral is independent of x.

Proof. Let \scrH (x) :=
\bigl\{ 
A \in \BbbR n\times N | Ax = 0

\bigr\} 
. It is a linear subspace of \BbbR n\times N of codimen-

sion n. Let U \in \BbbR N\times n be a matrix whose columns form an orthonormal basis for Tx\scrM , so
that det(A| \mathrm{T}x\scrM ) = det(AU). Furthermore, let O \in \BbbR N\times N be an orthogonal matrix with

Ox = e1, where e1 = (1, 0, . . . , 0)T \in \BbbR N . Then, \scrH (e1)O = \scrH (x). Making a change of
variables A \mapsto \rightarrow AO we get

(6.1)

\int 
A\in \scrH (x)

| det(A| \mathrm{T}x\scrM )| \varphi n\times N (A) dA =

\int 
A\in \scrH (e1)

| det(AOU)| \varphi n\times N (AO) dA.

We have \varphi n\times N (AO) = \varphi n\times N (A), because the Gaussian distribution is orthogonally invariant.
Moreover, any A \in \scrH (e1) is of the form A = [0, A\prime ] with A\prime \in \BbbR n\times (N - 1), and we have
\varphi n\times N (A) = 1\surd 

2\pi 
n\varphi n\times (N - 1)(A

\prime ). Let us denote by O\prime the lower (N  - 1) \times n part of OU , so

that AOU = A\prime O\prime . It follows that (6.1) is equal to

1\surd 
2\pi 

n

\int 
A\prime \in \BbbR n\times (N - 1)

| det(A\prime O\prime )| \varphi n\times (N - 1)(A
\prime ) dA\prime .

We show that O\prime has orthonormal columns: since \scrM \subset \BbbS N - 1, the tangent space Tx\scrM is
orthogonal to x, which implies UTx = 0. Furthermore, eT1OU = (UTOT e1)

T = (UTx)T . It
follows that the first row of OU contains only zeros and so the columns of O\prime must be pairwise
orthogonal and of norm one. A standard Gaussian matrix multiplied with a matrix with
orthonormal columns is also standard Gaussian, so we have\int 

A\prime \in \BbbR n\times (N - 1)

| det(A\prime O\prime )| \varphi n\times (N - 1)(A
\prime ) dA\prime =

\int 
M\in \BbbR n\times n

| det(M)| \varphi n\times n(M) dM.

This implies \int 
A\in \scrH (x)

\varphi n\times N (A)| det(A| \mathrm{T}x\scrM )| dA =
\BbbE M\sim \varphi n\times n | det(M)| 

\surd 
2\pi 

n .

Finally, we compute vol(\BbbP n) = 1
2vol(\BbbS 

n) =
\surd 
\pi 

n+1

\Gamma (n+1
2

)
, and by [37, Theorem 3.2.15], we have

\BbbE M\sim \varphi n\times n det(M
TM)

1
2 = 1\surd 

\pi 

\surd 
2
n
\Gamma (n+1

2 ). This finishes the proof.

Proof of Theorem 6.1. We define \scrI :=
\bigl\{ 
(A, x) \in \BbbR n\times N \times \scrM | Ax = 0

\bigr\} 
. It is an algebraic

subvariety of \BbbR n\times N \times \scrM . One can show that \scrI is smooth, but for our purposes it suffices to
integrate over the dense subset of \scrI that is obtained by removing potential singularities from
\scrI .
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Let \pi 1 and \pi 2 be the projections from \scrI to \BbbR n\times N and \scrM , respectively. Applying Theo-
rem 3.6 first to \pi 1 and then to \pi 2 yields

\BbbE 
A\sim \varphi n\times N

f(A) =

\int 
\scrM 
f(x)

\Biggl( \int 
A\in \pi 1(\pi 

 - 1
2 (x))

\varphi n\times N (A)
NJ(\pi 2, (A, x))

NJ(\pi 1, (A, x))
dA

\Biggr) 
dx.

By [7, section 13.2, Lemma 3], the ratio of normal Jacobians in the integrand equals
| det(A| \mathrm{T}x\scrM )| . We get

\BbbE 
A\sim \varphi n\times N

f(A) =

\int 
\scrM 
f(x)

\Biggl( \int 
A\in \pi 1(\pi 1

2(x))
\varphi n\times N (A)| det(A| \mathrm{T}x\scrM )| dA

\Biggr) 
dx

=
1

vol(\BbbP n)

\int 
\scrM 
f(x)dx;

the second equality by Lemma 6.3. This proves the first part.
Let now Y \in \scrI be the random variable obtained by choosing A \in \BbbR n\times N with distribu-

tion \psi (A) = \varphi (A) f(A)

\BbbE A\sim \varphi n\times N
f(A)

and, independently of A, a point x \in \scrM \cap \scrL A with probability

f(x)f(A) - 1. Then, by construction, X = \pi 2(Y ). Let \gamma be the density of X. Applying the
first part of Corollary 3.7 to \pi 1 and then the second part to \pi 2, we have

\gamma (x) =

\int 
(A,x)\in \pi  - 1

2 (x)

\psi (A)f(x)NJ(\pi 2, (A, x))

f(A)NJ(\pi 1, (A, x))
dA

=
f(x)

\BbbE \varphi (f)

\int 
(A,x)\in \pi  - 1

2 (x)
\varphi (A) | det(A| \mathrm{T}x\scrM )| dA

=
f(x)

\BbbE \varphi (f)

1

vol(\BbbP n)

=
f(x)\int 

\scrM f(x) dx
;

the last penultimate equality again by Lemma 6.3, and the last equality by the first part of
the theorem. This finishes the proof.

7. Comparison with previous work. We now briefly review the use of kinematic formulas
in applications and compare our method to them.

In [8], the authors use a Crofton-type formula for curves to establish a link between
a discrete cut metric on a grid, which is an object in combinatorial optimization, and a
Euclidean metric on \BbbR 2. This is then applied to a problem in image segmentation.

In [28], the authors use the Cauchy formula and Crofton formula to compute Minkowski
measures (e.g., surface area, perimeter) of discrete binary 2-dimensional or 3-dimensional
pictures given as a grid of white or black pixels. Since the picture is discrete, the set of lines
is also appropriately discretized, as well as Crofton's formula itself. So the difference to our
method here lies in the discretization. In [29], a more efficient way to evaluate the discretized
Crofton's formula is proposed, using run-length encoding.
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Figure 7.1. The plot shows estimates for the volumes of two curves \scrM obtained from empirical esti-
mates for 1 \leq k \leq 105 samples. On the left, \scrM is the curve from (2.1). On the right, \scrM is the ellipse
\{ x \in \BbbR 2 | (x/3)2 + y2  - 1 = 0\} . Its volume is known and shown by the black line. The blue curve shows
our method, and the red curve shows the method from [35], where we have used the circle of radius 3 for \scrE .
Our method is guaranteed to converge to the true volume of \scrM for k \rightarrow \infty , while the other method is not, as
exemplified by the plot. Our method seems to converge at least as quickly as the other method, if not slightly
faster.

In [35], the authors use Crofton's formula to approximate the volume of a body \scrM . They
use a different sampling method, which goes as follows: (1) Find a compact body \scrE containing
\scrM , of known volume vol(\scrE ), such that the space of lines intersecting \scrE is approximately the
same as the space of lines intersecting \scrM . For example, \scrE could be a sphere containing \scrM .
(2) Sample uniformly from the set of lines that intersect \scrE . (3) Compute the total number
of intersection points of all the sampled lines with \scrE (call it g) and with \scrM (call it h). (4)
Approximate the volume of \scrM as h

g vol(\scrE ).
As the authors write in [35], this method can only give an approximation for the volume

of \scrM . Its accuracy depends on the choice of \scrE , i.e., on how well the uniform distribu-
tion on the set of lines intersecting \scrE approximates the same with respect to \scrM . On the
other hand, our method is guaranteed to converge to the true volume given enough sam-
ples. We tested both methods on the curve \scrM from (2.1) as well as on the ellipse \scrM 1 =
\{ x \in \BbbR 2 | (x/3)2 + y2  - 1 = 0\} , choosing \scrE to be the centered circle of radius 3. We plotted
the results in Figure 7.1.

Finally, we want to mention [19, 36]. In these works the authors derive MCMC methods
for sampling \scrM by intersecting it with random subspaces moving according to the kinematic
measure in \BbbR N . This is related to our discussion from the introduction, where we proposed
sampling from \psi (A, b) using MCMC methods. Taking this approach and comparing it to
[19, 36] is left for future work as we discuss in the next section.

8. Discussion. We explained a new method to sample from a manifold \scrM described
by polynomial implicit equations. The implementation we described generates independent
samples from the density \psi (A, b) by rejection sampling, hence, independent points x \in \scrM .
As we made experiments, we observed some downsides of our method. Namely, our method
becomes slow when the degree of the variety is large in which case it is not easy to find a good
\kappa , and the rejection rate in the sampling process becomes infeasibly large.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RANDOM POINTS ON AN ALGEBRAIC MANIFOLD 703

But we could also sample from \psi (A,B) using an MCMCmethod with the goal of improving
the rejection rate, at the cost of introducing dependencies between samples. In contrast to
the known MCMC methods for nonlinear manifolds, our method would employ MCMC on a
flat space. We name using MCMC methods for sampling \psi (A,B) as a possible direction for
future research.
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