1. Introduction

Basic notions

Statistics: probability density

Algebra: ring, field.

Outline

Discrete and Gaussian statistical models Maximum likelihood estimation Algebraic geometry basics Algebraic models

Statistical models

Definition. Let Ω be a measurable space ('sample space'), $\operatorname{Prob}(\Omega)$ the set of all probability densities on Ω . A *statistical model* is a subset $\mathcal{M} \subseteq \operatorname{Prob}\Omega$. A *parametric* statistical model is a statistical model \mathcal{M} together with a set $\Theta \subseteq \mathbb{R}^d$ and a surjection $\Theta \to \mathcal{M}$.

Maximum likelihood estimation problem: given $e=(e_1,\ldots,e_N)\in\Omega^N$ independent and identically distributed (i.i.d.) samples, find $x\in M$ such that its density $f_x\in\operatorname{Prob}\Omega$ maximises (since i.i.d.)

$$f_x^N(e) = \prod_{i=1}^n f_x(e_i)$$

This is equivalent to the problem (\star)

$$\max_{x \in \mathcal{M}} \sum_{i=1}^n \log f_x(e_i)$$

Example 1

$$egin{aligned} \Omega &= (0,1,2,3) \ \Delta_3 &= \{(p_0,p_1,p_2,p_3) \in \mathbb{R}^4 \mid p_j \geq 0 ext{ for all } j, \sum_j p_j = 1\} \ & ext{Independence model (see Fig. 1):} \ \Theta &= \{(\theta,\eta) \in (0,1) \times (0,1)\} \ &p:\Theta &\to \Delta_3, \quad (\theta,\eta) \mapsto (\theta\eta,(1-\theta)\eta,(1-\theta)\eta,(1-\theta)(1-\eta)) \ \mathcal{M} &= \lim p = \{p \in \Delta_3 \mid p_0p_3 - p_1p_3 = 0\}. \ & ext{If } e &= (0,0,1,3,3) ext{ then} \end{aligned}$$

$$(\star) \Leftrightarrow \max_{p \in \mathcal{M}} 2\log p_0 + \log p_1 + 2\log p_3.$$

Data vector: $e \rightarrow u = (2, 1, 0, 2) \in \mathbb{N}^4$.

Definition. A discrete statistical model on n+1 outcomes is a subset $\mathcal{M}\subseteq \Delta_n$, where

$$\Delta_n = \{p \in \mathbb{R}^{n+1} \mid p_j \geq 0 ext{ for all } j, \sum_j p_j = 1\}.$$

A data vector is $u \in \mathbb{N}^{n+1}$.

An empirical distribution is q=u/|u| where $|u|=\sum_j u_j$ or just any $q\in\Delta_n$. The log-likelihood function given $q\in\Delta_n$ is

$$\ell: \mathcal{M} imes \Delta_n o \mathbb{R}, \quad \ell(p,q) = \sum_{j=0}^n q_j \log p_j$$

The ML estimation problem given q is

$$\max_{p \in \mathcal{M}} \sum_{j=0}^n q_j \log p_j.$$

Example 2

Let $\Omega=\mathbb{R}^n$. The Gaussian probability densities on Ω with mean zero correspond 1:1 with the positive definite $n\times n$ symmetric matrices. These are interpreted either as covariance matrices Σ or concentration matrices $K=\Sigma^{-1}$.

$$\Sigma = egin{pmatrix} \mathrm{Var}(X) & \mathrm{Cov}(X,Y) & \mathrm{Cov}(X,Z) \ \dots & \mathrm{Var}(Y) & \mathrm{Cov}(Y,Z) \ \dots & \dots & \mathrm{Var}(Z) \end{pmatrix}$$

 Σ covariance matrix \rightsquigarrow

$$f_\Sigma(x) = (2\pi)^{-n/2}\det(\Sigma)^{-1/2}\expigg(-rac{1}{2}x^T\Sigma^{-1}xigg).$$

 $n=3 \leadsto \text{Gaussian random variables } X,Y,Z.$

$$\mathrm{PD}_3 = \{M \in \mathrm{Sym}_2(n imes n, \mathbb{R})\}$$

$$X \perp \!\!\!\perp Y \Leftrightarrow \operatorname{Cov}(X,Y) = 0$$
 (since Gaussian)

Independence covariance model: $\mathcal{M} = \{\Sigma = (\sigma_i j) \in \mathrm{PD}_3 \mid \sigma_{12} = 0\}$ Independence concentration model:

$$\mathcal{M}=\{K\in \mathrm{PD}_3\mid K^{-1}\in \mathcal{M}\}=\{K=(k_{ij})\in \mathrm{PD}_3\mid k_{12}k_{23}-k_{13}k_{33}=0\}.$$
 If $e=(e_1,e_2,e_3)\in (\mathbb{R}^3)^3$, then by [Sullivant] Prop. 5.3.7:

$$(\star) \Leftrightarrow \max_{\Sigma \in \mathcal{M}} -\log \det(\Sigma) - \operatorname{tr}(S\Sigma^{-1}),$$

with $S = (1/3) \sum_{j=1}^{3} e_j e_j^T$ ("sample covariance").

Definition. A Gaussian statistical model on n random variables is a subset $\mathcal{M} \subseteq \mathrm{PD}_n$, where

$$\mathrm{PD}_n = \{\Sigma \in \mathrm{Mat}(n imes n, \mathbb{R}) \mid \Sigma ext{ symmetric pos. def.} \}$$

A data vector is $e \in (\mathbb{R}^n)^N$.

An empirical distribution is $S=(1/n)\sum_{j=1}^n e_j e_j^T$ or just any $S\in \mathrm{PD}_n$.

The negated log-likelihood function is

$$\ell:\mathcal{M} imes \mathrm{PD}_n o \mathbb{R}$$

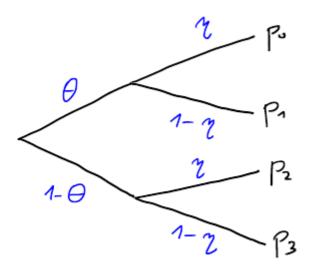
given by

$$\ell_{
m cov}(\Sigma,S) = \log \det(\Sigma) + {
m tr}(S\Sigma^{-1}) \qquad ext{(covariance version)}$$
 $\ell_{
m con}(K,S) = \log \det(K) - {
m tr}(SK) \qquad ext{(concentration version)}.$

The ML estimation problem given S is then

$$egin{aligned} \min_{x \in \mathcal{M}_{ ext{cov}}} \ell_{ ext{cov}}(\Sigma, S) & ext{(covariance version)} \ \max_{x \in \mathcal{M}_{ ext{con}}} \ell_{ ext{con}}(\Sigma, S) & ext{(concentration version)}. \end{aligned}$$

Fig. 1



Algebraic geometry basics

Definitions.

K a field \leadsto

 $K[x_1,\ldots,x_n]=\{ ext{polynomials in the variables }x_1,\ldots,x_n ext{ with coefficients in }K\}$ polynomial

$$K^n = \{(x_1, \dots, x_n) \mid x_i \in K\}$$
 affine space

$$K(x_1,\ldots,x_n)=\{f/g\mid f,g\in K[x_1,\ldots,x_n],g
eq 0\} ext{ field of rational functions}$$

 f_1,\ldots,f_k polynomials \leadsto

$$I=\langle f_1,\ldots,f_k
angle=\{\sum_{j=1}^kg_jf_j\mid g_j\in K[x_1,\ldots,x_n]\} ext{ the } ideal ext{ generated by } f_1,\ldots,f_k$$

$$V(I) = \{x \in K^n \mid f_1(x) = \dots = f_k(x) = 0\} = \{x \mid g(x) = 0 ext{ for all } g \in I\}$$
 the algebraic variety

An *ideal*: any such $I = \langle f_1, \dots, f_k.$

A variety: any such V = V(I).

 $S\subseteq K^n$ a subset \leadsto

$$\overline{S} = igcap_{V\supseteq S ext{ variety}} V \quad ext{ the } \mathit{closure} ext{ of } S$$

$$I(S) = \{f \in k[x_1, \dots, x_n] \mid f(x) = 0 \text{ for all } x \in S\} \text{ the } ideal \text{ of } S$$

 $I \subseteq K[x_1, \ldots, x_n]$ an ideal \leadsto

$$\sqrt{I} ext{ or } \operatorname{rad}(I) = \{g \in K[x_1, \ldots, x_n] \mid \exists k \in \mathbb{N} : g^k \in I \} ext{ the } radical ext{ of } I$$

Hilbert's Nullstellensatz: if $K = \mathbb{C}$ then for all ideals I and sets $S \subseteq K^n$:

$$I(V(I)) = \operatorname{rad}(I),$$

$$V(I(S)) = \overline{S}.$$

Examples.

- 1. Let $I=\langle (x^2)\rangle\subseteq K[x].$ Then $\mathrm{rad}(I)=\langle x\rangle$ and $V(I)=V(\langle x\rangle)=\{0\}.$
- 2. From the Nullstellensatz it follows that $V(I_1) = V(I_2) \Leftrightarrow \operatorname{rad}(I_1) = \operatorname{rad}(I_2)$.
- 3. The Nullstellensatz does not work over \mathbb{R} : take $I_1=\langle x^2+1\rangle\subset\mathbb{R}[x]$. Then $V(I_1)=\emptyset=V(\mathbb{R}[x])$ but $\mathrm{rad}(I_1)\neq\mathbb{R}[x]$.

Definition. Let
$$K=\mathbb{R}$$
 and $f_1,\ldots,f_k,g_1,\ldots,g_\ell\in\mathbb{R}[x_1,\ldots,x_n].$ Then $ext{semialg}(f_1,\ldots,f_k\mid g_1,\ldots,g_\ell)=\{x\in\mathbb{R}^n\mid f_i(x)=0,g_j(x)>0 ext{ for all } i,j\}$

is the *semialgebraic set* defined by the f_i, g_j .

A semialgebraic set: any such $\mathcal{M} = \text{semialg}(f_i \mid g_j)$.

Its complexification is $\mathcal{M}_\mathbb{C}=V(f_1^\mathbb{C},\ldots,f_k^\mathbb{C})\subseteq \mathbb{C}^n$, where $f_i^\mathbb{C}$ is the image of f_i in $\mathbb{C}[x_1,\ldots,x_n]$.

Algebraic models

Definition. An algebraic model $\mathcal{M} \subseteq \mathcal{N}$ is a semialgebraic subset \mathcal{M} of a semialgebraic set \mathcal{N} of probability densities on some space Ω .

 $\mathcal N$ is the space of *empirical distributions*.

Its complexification is $\mathcal{M}_\mathbb{C}\subseteq\mathcal{N}_\mathbb{C}$

Examples: Example 1, Example 2.