1. Introduction

Basic notions
Statistics: probability density
Algebra: ring, field.

Outline

Discrete and Gaussian statistical models
Maximum likelihood estimation
Algebraic geometry basics

Algebraic models

Statistical models

Definition. Let Q2 be a measurable space (‘sample space'), Prob(Q2) the set of
all probability densities on Q. A statistical model is a subset M C ProbQ. A
parametric statistical model is a statistical model M together with a set ©® C R¢?
and a surjection ® — M.

Maximum likelihood estimation problem: given e = (ey,...,ex) € QY
independent and identically distributed (i.i.d.) samples, find z € M such that its
density f. € Prob ) maximises (since i.i.d.)

fa(e) = Hl fz(e:)
This is equivalent to the problem (%)
max ; log fz(e:)

Example 1

Q=(0,1,2,3)

As = {(po, p1,p2,p3) € R* | p; > 0 for all j, >.;pj=1}
Independence model (see Fig. 1):

© ={(6,m) € (0,1) x (0,1)}

p:©— Az, (0,n)— (6n,(1—0)n,(1—06)n,(1—6)(1—n))
M =imp = {p € A3z | pop3 — p1p3 = 0}.

If e =(0,0,1,3,3) then

() « max 2logpy + logp, + 2log ps.



Data vector: e — u = (2,1,0,2) € N4

Definition. A discrete statistical model on n + 1 outcomes is a subset M C A,,
where

= {pe Rn+1 |p] Z Oforallj,Zp] = 1}.
J

A data vector is u € N**1,
An empirical distribution is g = u/|u| where |u| = 3~ u; or just any g € An.
The log-likelihood function given g € A,, is

L:Mx A, =R, £(p,q qulogpg

The ML estimation problem given q is

n
map ZO ¢jlogp;.
‘7:

Example 2

Let © = R". The Gaussian probability densities on 2 with mean zero
correspond 1:1 with the positive definite n x n symmetric matrices. These are
interpreted either as covariance matrices ¥ or concentration matrices
K=X%"1.

Var(X) Cov(X,Y) Cov(X,Z2)
= Var(Y) Cov(Y,2)
\ Var(Z )

¥ covariance matrix ~-
—n/2 -1/2 I re1
fs(z) = (2m) det(X)~"“exp —5® Xz .

n = 3 ~» Gaussian random variables X,Y, Z.

PD3; = {M € Symy(n x n,R)}

X 1LY & Cov(X,Y)=0 (since Gaussian)

Independence covariance model: M = {¥ = (0;j) € PD3 | 012 = 0}
Independence concentration model:

M={K e PD; | K ! € M} ={K = (kij) € PD3 | ki2kas — k13ks3 = 0}.
If e = (e1, e, e3) € (R%)3, then by [Sullivant] Prop. 5.3.7:

-1
(%) & max — logdet(X) — tr(SX7),

with S = (1/3) ] | €5€; T ("sample covariance").
Definition. A Gaussian statistical model on n random variables is a subset

M C PD,, where



PD,, = {¥ € Mat(n x n,R) | ¥ symmetric pos. def.}

A data vectoris e € (R™)V.

An empirical distribution is S = (1/n) >."

o eje]T or just any S € PD,,.

The negated log-likelihood function is
{: M xPD, >R
given by
Leoy(2, S) = logdet(X) +tr(SE ')  (covariance version)
Leon (K, S) = logdet(K) — tr(SK) (concentration version).

The ML estimation problem given S is then

min feov (X, 9) (covariance version)
we cov
max leon(X,S) (concentration version).
xe con

Fig.1

Algebraic geometry basics

Definitions.

K afield ~

K[zi,...,zy] = {polynomials in the variables z1, ..., z, with coefficients in K} polynomiai
K" ={(x1,...,2,) | i € K} affine space

K(zi,...,zn) ={f/g| f,9 € K[z1,...,2zy],9 # 0} field of rational functions

fi,..., fr polynomials ~



k
I={f1,..., fr) = {Z 9ifi | g; € K[z1,...,zy,]} the ideal generated by f1,..., fx
=T

VI)={z € K" | fi(z) =--- = fr(x) =0} = {x | g(z) = 0 for all g € I} the algebraic vari

An ideal: any such I = (fi,..., f&.
A variety: any such V = V(I).
S C K™ a subset ~~

S = ﬂ V  the closureof S

VDS variety
I(S)={f € klzy,...,z,] | f(x) =0for all z € S} the ideal of S
I C K[zy,...,z,] anideal ~»
VTor rad(I) = {g € K[z1, ...,z | Ik € N : gF € I} the radical of T

Hilbert's Nullstellensatz: if K = C then for all ideals I and sets S C K":

Examples.

1. Let I = ((z?)) C K|z]. Thenrad(I) = (z) and V(I) = V((z)) = {0}.

2. From the Nullstellensatz it follows that V(I;) = V(I2) < rad(l1) = rad(I2).

3. The Nullstellensatz does not work over R: take I; = (z? + 1) C R[z]. Then
V(1) = 0 = V(R[z]) but rad(I1) # Rlz].

Definition. Let K =R and f4,..., fx, 91,.-.,9¢ € Rlz1,...,z,). Then
semialg(fi,..., fx | 91,...,9¢) ={z € R" | fi(x) =0, g;(x) > 0 for all 4, j}

is the semialgebraic set defined by the f;, g;.
A semialgebraic set: any such M = semialg(f; | g;)-
Its complexification is Mc = V(ff,..., fr) C C", where fF is the image of f; in

Clz1y ..., xy).

Algebraic models

Definition. An algebraic model M C N is a semialgebraic subset M of a semi
algebraic set N of probability densities on some space Q.

N is the space of empirical distributions.

Its complexification is Mc C N¢

Examples: Example 1, Example 2.






