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Two questions about LSSMs

Let L ⊂ Cn×n be a d-dimensional linear space of symmetric
matrices.

Question A

What is the degree of the variety L−1 obtained by inverting all
matrices in L?

φ(n, d)

Question B

Let Lr ⊂ L be the variety of all rank ≤ r matrices in L, and let L∗r
be the dual variety. When is L∗r a hypersurface, and what is its
degree?

δ(d, n, r)

To make our lives easier, we’ll assume that L is general.
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ML-degrees

ML-degree of the linear concentration model
The ML-degree of an LSSM L ⊂ Sym2 Cn is the number of critical
points of the function K 7→ log (detK)− tr(S ·K) for S generic.

Exercise
The critical points are precisely the matrices K ∈ L for which
〈K−1, X〉 = 〈S,X〉 for all X ∈ L. (Here 〈X,Y 〉 := tr(X · Y )).
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Exercise
The critical points are precisely the matrices K ∈ L for which
〈K−1, X〉 = 〈S,X〉 for all X ∈ L. (Here 〈X,Y 〉 := tr(X · Y )).

Hint
Write L = Span(K1, . . . ,Kd), so that K =

∑
i λiKi, and put all

partial derivatives ∂
∂λj

equal to 0. Use Jacobi’s formula:
https://en.wikipedia.org/wiki/Jacobi’s_formula.
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ML-degree of the linear concentration model
The ML-degree of an LSSM L ⊂ Sym2 Cn is the number of critical
points of the function K 7→ log (detK)− tr(S ·K) for S generic.

Exercise
The critical points are precisely the matrices K ∈ L for which
〈K−1, X〉 = 〈S,X〉 for all X ∈ L. (Here 〈X,Y 〉 := tr(X · Y )).

ML-degree, reformulated
The ML-degree of an LSSM L ⊂ Sym2 Cn is the number of pairs
(K,Σ) with

Σ ·K = Idn, K ∈ L, Σ− S ∈ L⊥,

where S ∈ Sym2 Cn generic.
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ML-degrees

ML-degree, reformulated
The ML-degree of a

general

d-dimenional LSSM L ⊂ Sym2 Cn is
the number of pairs (K,Σ) with

Σ ·K = Idn, K ∈ L, Σ− S ∈ L⊥,

where S ∈ Sym2 Cn generic

and M is a general LSSM of
codimension d.

Hard fact
If L is general, we can replace L⊥ by a general space of the same
dimension.

So for general L, the ML-degree equals deg(L−1) = φ(n, d).

For special L (e.g. Gaussian graphical models), there are 2
interesting numbers to compute: deg(L−1) and the ML-degree.
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ML-degrees

Let V be an n-dimensional vector space.

Question A, projectivized
φ(n, d) is the number of pairs (K,Σ) ∈ P(S2V )× P(S2V ∗) with

Σ ·K = Idn, K ∈ L, Σ ∈M,

where L ⊂ P(S2V ) and M⊂ P(S2V ∗) are general projective
LSSMs, of dimension (d− 1) respectively codimension (d− 1).

X ⊂ P(S2V )× P(S2V ∗) the variety parametrized by (K,K−1).
The points of X are all pairs (K,Σ) ∈ P(S2V )× P(S2V ∗) with
K · Σ = Idn or K · Σ = 0. Technical difficulty: X is singular. We
will replace it with a smooth variety: the space of complete
quadrics.
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The algebraic degree of SDP

The KKT equations
Let V ⊆ U ⊆ Sym2(Rn) be LSSM’s, with dim(V) = d− 1 and
dim(U) = d+ 1. The KKT equations can be written as:

X ∈ V⊥, Y ∈ U , X · Y = 0.

For generic U and V, the number of solutions (X,Y ) with
rk(X) = r and rk(Y ) = n− r is known as the algebraic degree of
semidefinite programming, written δ(d, n, r).
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The KKT equations
Let V = Cn and let V ⊆ U ⊆ P(Sym2(V )) be LSSM’s, with
dim(V) = d− 2 and dim(U) = d.
δ(d, n, r) is the number of solutions to:

X ∈ V⊥, Y ∈ U , X · Y = 0.

with rk(X) = r and rk(Y ) = n− r.
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be the dual variety. If L∗r a hypersurface, then it’s degree is equal
to δ(d, n, r).

Key point: for Y ∈ Dr ⊆ P(S2V ), the hyperplanes tangent to Dr
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The algebraic degree of SDP

The KKT equations
Let V = Cn and let U ⊆ P(Sym2(V )), W ⊆ P(Sym2(V ∗)) be
general LSSM’s, with codim(V) = d− 1 and dim(U) = d.
δ(d, n, r) is the number of solutions to:
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Complete quadrics

For A ∈ S2V , write
∧k A ∈ S2(

∧k V ) for the k-th compound
matrix, whose entries are the k × k minors of A.

•
∧1A = A,

∧n−1A = adj(A).
• Coordinate-free: if A : V ∗ → V , then

∧k A :
∧k V ∗ → ∧k V .

Definition
The space Φ(V ) of complete quadrics is the closure of the
image of the set of invertible matrices under the map

ϕ : P(S2V ) ↪→ P
(
S2V

)
× P

(
S2(

2∧
V )
)
× · · · × P

(
S2(

n−1∧
V )
)
,

sending a matrix A to (A,
∧2A, . . . ,

∧n−1A).
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Complete quadrics

Φ(V ) is a smooth variety such that

Φ(V )

P(S2V ) P(S2V ∗)

π1 πn−1

A 7→A−1

• φ(n, d) = |π−1
1 (L) ∩ π−1

n−1(M)|, where dim(L) = d− 1 and
codim(M) = d− 1.

• δ(d, n, r) = |π−1
1 (U) ∩ π−1

n−1(V) ∩ Sr|, where dim(U) = d,
codim(V) = d− 1, and

Sr ={(A1, . . . , An−1) ∈ Φ(V ) | rkAr = 1}
= cl {(A1, . . . , An−1) ∈ Φ(V ) | rkA1 = r}
= cl {(A1, . . . , An−1) ∈ Φ(V ) | rkAn−1 = n− r}.
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Complete quadrics

•
∧k A defines a quadric hypersurface Q(

∧k A) in the
Grassmannian G(k − 1,PV ∗), consisting of all k-planes
tangent to Q.

• More precisely: being tangent to Q is given by the quadratic
relation

P T (
k∧
A)P = 0.

in the Plücker coordinates of a (k − 1)-plane.
• So a point in A = (A1, . . . , An−1) ∈ Φ(V ) is given by a

collection of (possibly nonsmooth) quadrics
Qi = Q(Ai+1) ⊂ G(i,PV ∗).
• For a general A, all Qi are smooth, and Qi is the space of
i-planes tangent to Q0.

LSSM’s Tim Seynnaeve 9/18
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Complete quadrics

Example: n=2

(

−ε 0 0
0 ε 0
0 0 1

 ,
−1 0 0

0 1 0
0 0 ε

)

is a point in Φ(V ):
• Q0: εx2

0 = εx2
1 + x2

2,
a smooth conic in P(V ∗)

• Q1: β2
0 = β2

1 + εβ2
2 ,

a smooth conic in P(V )
(i.e. a line β0x0 + β1x1 + β2x2 = 0 is tangent to Q0 if and only if
β2

0 = β2
1 + εβ2

2 .)
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Complete quadrics

Example: n=2

(

0 0 0
0 0 0
0 0 1

 ,
−1 0 0

0 1 0
0 0 0

)

is a point in Φ(V ):
• Q0: x2

2 = 0,
a double line in P(V ∗)

• Q1: β2
0 = β2

1 ,
two lines in P(V )

(i.e. a line β0x0 + β1x1 + β2x2 = 0 is “tangent to Q0” if and only
if β0 = ±β1, if and only if the line goes through [1 : 1 : 0] or
[1 : −1 : 0].)
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Complete quadrics

For n = 3, there are 4 types of complete quadrics
(A1, A2) ∈ Φ(V ) ⊂ P(S2V )× P(S2V ∗):

rk(A1) = 3, rk(A2) = 3 rk(A1) = 1, rk(A2) = 2

rk(A1) = 2, rk(A2) = 1 rk(A1) = 1, rk(A2) = 1

LSSM’s Tim Seynnaeve 11/18



Complete quadrics

S2

S1

S3
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Complete quadrics

The set of quadrics passing through a number of given points form
an LSSM. Hence we can reformulate our main questions:

• φ(n, d) = |π−1
1 (L) ∩ π−1

n−1(M)| is the number of complete
quadrics A ∈ Φ(V ) s.t. Q0 contains

(n+1
2
)
− d given points

and Qn−2 contains d− 1 given points.
• δ(d, n, r) = |π−1

1 (U) ∩ π−1
n−1(V) ∩ Sr| is the number of

complete quadrics A ∈ Sr s.t. Q0 contains
(n+1

2
)
− d− 1

given points and Qn−2 contains d− 1 given points.

Remark
It can happen that δ(d, n, r) = 0, namely when Pataki’s
inequalities below are not satisfied, or equivalently, when U∗r is not
a hypersurface.(

n− r + 1
2

)
≤ d,

(
r + 1

2

)
≤
(
n+ 1

2

)
− d
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Enumerative geometry by example

Suppose somebody asks you the following question:
“How many lines in P3 intersect four given lines?”

• The Grassmannian G(1, 3) has a Chow ring (or cohomology
ring) A(G(1, 3)).
• A condition on lines in P3 gives a subvariety of G(1, 3), which

gives a class in A(G(1, 3)).
• Intersecting subvarieties corresponds to taking products in
A(G(1, 3)).
• So our problem becomes: find the class
α = [{Γ | Γ ∩ L 6= ∅}] ∈ A(G(1, 3)) and compute α4.
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Computing φ(n, d) and δ(d, n.r)

In the Chow ring A(Φ(V )), we have two interesting classes for
every k = 1, . . . , n− 1.
• The degeneration class δk = [Sk] = [{(A1, . . . , An−1) ∈

Φ(V ) | rk(Ak) = 1}] ∈ A1(Φ(V )).
• δk is the class of all complete quadrics for which
Qk−1 ⊆ G(k − 1,PV ∗) is a double hyperplane.

• The characteristic class
µk = [{(A1, . . . , An−1) ∈ Φ(V ) | Ak ∈ H}] ∈ A1(Φ(V )),
where H ⊂ P(S2∧k V ) is a general hyperplane.
• µk is the class of all complete quadrics for which
Qk−1 ⊆ G(k − 1,P(V ∗)) passes through a given element of
G(k − 1,P(V ∗)).

We want to compute

δ(d, n, r) = µ
(n+1

2 )−d−1
1 µd−1

n−1δr and φ(n, d) = µ
(n+1

2 )−d
1 µd−1

n−1.
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Computing φ(n, d) and δ(d, n.r)

δ(d, n, r) = µ
(n+1

2 )−d−1
1 µd−1

n−1δr and φ(n, d) = µ
(n+1

2 )−d
1 µd−1

n−1.

Two approaches:
• There is an algorithm for computing arbitrary products
µa1

1 · · ·µ
an−1
n−1 · δ

b1
1 · · · δ

bn−1
n−1 in A(Φ(V )):

• If all ai = 1: reduces to a computation in A(Fl(V )).
• Use the relations 2µk = µk−1 + δk + µk+1.

• The product δ(d, n, r) is equal to a product of Segre classes of
certain line bundles in Gr(r, n).

• This allows us to prove that for fixed d, r, δ(d, n, r) and
φ(n, d) are polynomials in n.
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Further directions

• Skew-symmetric matrices (“type D case”) and general
matrices (“type A case”).

• Equivariant K-theory/cohomology of Φ(V ).
• Nongeneric L (Gaussian graphical models).
• Maximum likelihood degree for linear covariance models.
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Thank you!
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