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Two questions about LSSMs

LSSM'’s

Let £ C C™*™ be a d-dimensional linear space of symmetric
matrices.

Question A

What is the degree of the variety £~! obtained by inverting all
matrices in L£?
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Let £ C C™*™ be a d-dimensional linear space of symmetric
matrices.

Question A

What is the degree of the variety £~! obtained by inverting all
matrices in L? ¢(n,d)

Question B

Let £, C L be the variety of all rank < 7 matrices in £, and let L
be the dual variety. When is £} a hypersurface, and what is its
degree? o(d,n,r)
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ML-degrees N

ML-degree of the linear concentration model

The ML-degree of an LSSM £ C Sym, C™ is the number of critical
points of the function K +— log (det K) — tr(S - K) for S generic.
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points of the function K +— log (det K) — tr(S - K) for S generic.

Exercise

The critical points are precisely the matrices K € L for which
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ML-degrees

ML-degree of the linear concentration model

The ML-degree of an LSSM £ C Sym, C™ is the number of critical
points of the function K +— log (det K) — tr(S - K) for S generic.

Exercise

The critical points are precisely the matrices K € L for which
(K71, X) = (S, X) for all X € L. (Here (X,Y) :=tr(X - Y)).

Hint
Write £ = Span(K71, ..., Ky), so that K = >, \;K;, and put all
partial derivatives a(?\j equal to 0. Use Jacobi’'s formula:

https://en.wikipedia.org/wiki/Jacobi’s_formula.
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ML-degrees A

ML-degree of the linear concentration model

The ML-degree of an LSSM £ C Sym, C™ is the number of critical
points of the function K +— log (det K) — tr(S - K) for S generic.

Exercise

The critical points are precisely the matrices K € L for which
(K71, X) = (S, X) for all X € L. (Here (X,Y) :=tr(X - Y)).

ML-degree, reformulated

The ML-degree of an LSSM £ C Sym, C” is the number of pairs
(K, X) with

Y- K=1Id, KeLl,¥-Seclt
where S € Sym, C™ generic.
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ML-degrees

ML-degree, reformulated

The ML-degree of a d-dimenional LSSM £ C Sym, C” is
the number of pairs (K, ) with

Y- K=1Id, KeLl,¥—Seclt

where S € Sym, C™ generic
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The ML-degree of a d-dimenional LSSM £ C Sym, C” is
the number of pairs (K, ) with
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where S € Sym, C™ generic

Hard fact

If £ is general, we can replace £ by a general space of the same
dimension.
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ML-degree, reformulated

The ML-degree of a general d-dimenional LSSM £ C Sym, C” is
the number of pairs (K, ) with

Y K=Id,, KeL,X-5eM,

where S € Sym, C™ generic and M is a general LSSM of
codimension d.

Hard fact
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dimension.
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ML-degree, reformulated

The ML-degree of a general d-dimenional LSSM £ C Sym, C” is
the number of pairs (K, ) with

Y K=Id,, KeL,X-5eM,

where S € Sym, C™ generic and M is a general LSSM of
codimension d.

Hard fact

If £ is general, we can replace £ by a general space of the same
dimension.

So for general £, the ML-degree equals deg(£™!) = ¢(n, d).

For special £ (e.g. Gaussian graphical models), there are 2
interesting numbers to compute: deg(L£~!) and the ML-degree.
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ML-degrees

Let V' be an n-dimensional vector space.
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Let V' be an n-dimensional vector space.

Question A, projectivized
#(n, d) is the number of pairs (K, ) € P(S?V) x P(S2V*) with

Y- K=Id,, KeLl,¥YeM,

where £ C P(S5%V) and M C P(S52V*) are general projective
LSSMs, of dimension (d — 1) respectively codimension (d — 1).
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Let V' be an n-dimensional vector space.

Question A, projectivized
#(n, d) is the number of pairs (K, ) € P(S?V) x P(S2V*) with

Y- K=Id,, KeLl,¥YeM,

where £ C P(S5%V) and M C P(S52V*) are general projective
LSSMs, of dimension (d — 1) respectively codimension (d — 1).

X C P(S%V) x P(S?V*) the variety parametrized by (K, K~1).
The points of X are all pairs (K,Y) € P(S?V) x P(S2V*) with
K -¥Y=1Id,or K-YX=0.
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ML-degrees A

Let V' be an n-dimensional vector space.

Question A, projectivized
#(n, d) is the number of pairs (K, ) € P(S?V) x P(S2V*) with

Y- K=Id,, KeLl,¥YeM,

where £ C P(S5%V) and M C P(S52V*) are general projective
LSSMs, of dimension (d — 1) respectively codimension (d — 1).

X C P(S%V) x P(S?V*) the variety parametrized by (K, K~1).
The points of X are all pairs (K,Y) € P(S?V) x P(S2V*) with
K -¥ =1Id, or K-¥ = 0. Technical difficulty: X is singular. We
will replace it with a smooth variety: the space of complete
quaderics.
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The algebraic degree of SDP

o
/JJ

The KKT equations

Let V C U C Symy(R™) be LSSM's, with dim(V) =d — 1 and
dim(U) = d + 1. The KKT equations can be written as:

Xevihyeu, X -y =0.

For generic U and V, the number of solutions (X,Y") with
rk(X) =r and rk(Y) = n — r is known as the algebraic degree of
semidefinite programming, written §(d, n,r).
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LSSM'’s

The KKT equations

Let V. =C" and let V C U C P(Sym,(V')) be LSSM’s, with
dim(V) =d — 2 and dim(U) = d.

d(d,n,r) is the number of solutions to:

Xevh Yeu X-vy=0.

with tk(X) = r and rk(Y) =n — r.
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The algebraic degree of SDP 2N

The KKT equations

Let V. =C" and let V C U C P(Sym,(V')) be LSSM’s, with
dim(V) =d — 2 and dim(U) = d.
d(d,n,r) is the number of solutions to:

Xevh Yeu X-vy=0.
with tk(X) = r and rk(Y) =n — r.

Fact

Let £, C L be the variety of all rank < r matrices in £, and let L}

be the dual variety. If £ a hypersurface, then it's degree is equal
to 6(d,n,r).

Key point: for Y € D, C P(S%V), the hyperplanes tangent to D,
are precisely the X € P(S2V*) with X - Y = 0.

LSSM'’s | Tim Seynnaeve | 6/18



The algebraic degree of SDP 2N

The KKT equations

Let V =C" and let Y C P(Sym,(V)), W C P(Symy(V*)) be
general LSSM’s, with codim(V) = d — 1 and dim(//) = d.
d(d,n,r) is the number of solutions to:
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Complete quadrics

/ﬁ

For A € S?V, write A¥ A € S2(\* V) for the k-th compound
matrix, whose entries are the £ x k minors of A.
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For A € S?V, write A¥ A € S2(\* V) for the k-th compound
matrix, whose entries are the £ x k minors of A.

o N'A=A4 N1 A=adj(A).
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Complete quadrics
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For A € S?V, write A¥ A € S2(\* V) for the k-th compound
matrix, whose entries are the £ x k minors of A.

o N'A=A4 N1 A=adj(A).
e Coordinate-free: if A: V* — V, then A¥A: AFV* = AF V.
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Complete quadrics

For A € S?V, write A¥ A € S2(\* V) for the k-th compound
matrix, whose entries are the £ x k minors of A.

o N'A=A4 N1 A=adjA).
o Coordinate-free: if A: V* — V, then /\kA : /\k V* — /\k V.

Definition
The space (V') of complete quadrics is the closure of the
image of the set of invertible matrices under the map

p B(SPV) 5 P(SPV) x P <S2(/2\V)> X x P (5‘2(”/_\1 V)),

sending a matrix A to (A, A% A,...,\"" L A).
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Complete quadrics

® (V') is a smooth variety such that

(V)
Ny
2\ o ___
P(S<V) A » P(
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Complete quadrics

/ﬁ

® (V) is a smooth variety such that

(V)
RSPV wooeempi o PSEVY)

o $(n,d) =|my ( )Nt (M), where dim(L) = d — 1 and
codim(M) =d — 1.
e (d,n,r) = |m ' (U) N L (V)N S|, where dim () = d,

codim(V) = d —1, and
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Complete quadrics N

® (V) is a smooth variety such that

(V)
RSPV wooeempi o PSEVY)

o $(n,d) =|my ( )Nt (M), where dim(L) = d — 1 and
codim(M) =d — 1.
e (d,n,r) = |m ' (U) N L (V)N S|, where dim () = d,

codim(V) = d —1, and

Sy :{(Al, R ,An_l) S (I)(V) ’ rk A, = 1}
:Cl{(Al,.. -7An—1) S @(V) | rk Ay = 7’}
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Complete quadrics

e A" A defines a quadric hypersurface Q(/\k A) in the
Grassmannian G(k — 1,PV™), consisting of all k-planes
tangent to Q.
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Complete quadrics

e A" A defines a quadric hypersurface Q(/\k A) in the
Grassmannian G(k — 1,PV™), consisting of all k-planes
tangent to Q.

e More precisely: being tangent to () is given by the quadratic
relation

PT(/k\ AP =0.

in the Pliicker coordinates of a (k — 1)-plane.
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Complete quadrics

LSSM'’s

e A" A defines a quadric hypersurface Q(/\k A) in the

Grassmannian G(k — 1,PV™), consisting of all k-planes
tangent to Q.

More precisely: being tangent to () is given by the quadratic
relation

k

PT(NA)P =0.

in the Pliicker coordinates of a (k — 1)-plane.
So a point in A= (Ay,...,Ap—1) € ®(V) is given by a
collection of (possibly nonsmooth) quadrics
Q; = Q(Aﬂ_l) C G(Z,]P)V*)
For a general A, all Q; are smooth, and @; is the space of
i-planes tangent to Q.

| Tim Seynnaeve |
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Complete quadrics

Example: n=2

0 -1
01,10
1 0

—&

(| o
0

o m O
o = O

is a point in ®(V):

o Qo: exd = ex? + 23,

a smooth conic in P(V*)
o Qu A =BT+,

a smooth conic in P(V)
(i.e. a line Bozo + Srx1 + P2xa = 0 is tangent to Qo if and only if

B3 =Bi+¢eb3.)
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Complete quadrics

Example: n=2

—€ -1

0
01,10
1 0

o m O
o = O

(| o
0

is a point in ®(V):
o Qo: exd = ex? + 23,
a smooth conic in P(V*)
o Qu A =BT+,
a smooth conic in P(V)
(i.e. a line Bozo + Srx1 + P2xa = 0 is tangent to Qo if and only if
B3 =p%+¢eB3.) Nowlet e — 0.
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Complete quadrics

Example: n=2

0 00 -1 0 0
(fo 0 of,] 0 1 0f)
0 0 1 0 0 O

is a point in ®(V):
e (o: x%zO,
a double line in P(V*)
o Qi: B3 =11,

two lines in P(V)
(i.e. a line Bozo + Srx1 + Paxa = 0 is “tangent to Q" if and only
if o = £01, if and only if the line goes through [1:1: 0] or
[1:-1:0].)
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Complete quadrics A

For n = 3, there are 4 types of complete quadrics
(A1, Ag) € (V) C P(S?V) x P(S2V*):
I'k(Al) == 3,I'k(A2) =3 I‘k(Al) == 1,I‘k(A2) =2

O

rk(Al) :; Q?Tk(AQ) =1 I‘k(Al) : 1,1‘1{(142) =1
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Complete quadrics

LSSM'’s

(3)

(4)
(1)non degenerate  (2) cone plane pair with 2 4oci on double
focus
O >
(5) (6) (7) (8)

double plane with complete conic

| Tim Seynnaeve

12/18



Complete quadrics

LSSM'’s

(3)

(4)
S (1)non degenerate  (2) cone plane pair with 2 4oci on double
1 focus
O | >
(5) (6) (7) (8)
double plane with complete conic
| Tim Seynnaeve

12/18



Complete quadrics

LSSM'’s

(3) (4)

(1)non degenerate  (2) cone plane pair with 2 4oci on double
focus
O = ——
(5) (6) (7) (8)

double plane w

ith complete conic

| Tim Seynnaeve

12/18



Complete quadrics

LSSM'’s

(4)
(1)non degenertte  (2) cone 2 focd or double
O]l
(5) (6) (7) (8)
double plane ypith complete conic
) ) S—

| Tim Seynnaeve
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Complete quadrics N

The set of quadrics passing through a number of given points form
an LSSM. Hence we can reformulate our main questions:
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The set of quadrics passing through a number of given points form
an LSSM. Hence we can reformulate our main questions:
e ¢(n,d) = |r (L) N, b (M) is the number of complete
quadrics A € ®(V) s.t. Qo contains (""2"1) — d given points
and ), o contains d — 1 given points.
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e ¢(n,d) = |r (L) N, b (M) is the number of complete
quadrics A € ®(V) s.t. Qo contains (""2"1) — d given points
and ), o contains d — 1 given points.

e §(d,n,r) = |r *(U) N7t (V)N S, is the number of
complete quadrics A € S, s.t. Qy contains ("'QH) —d—-1
given points and (},_o contains d — 1 given points.
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Complete quadrics

The set of quadrics passing through a number of given points form
an LSSM. Hence we can reformulate our main questions:

e ¢(n,d) = |r (L) N, b (M) is the number of complete
quadrics A € ®(V) s.t. Qo contains ("'2"1) — d given points
and ), o contains d — 1 given points.

e §(d,n,r) = |r *(U) N7t (V)N S, is the number of
complete quadrics A € S, s.t. Qy contains ("'QH) —d—-1
given points and (},_o contains d — 1 given points.

Remark

It can happen that 6(d,n,r) = 0, namely when Pataki’s
inequalities below are not satisfied, or equivalently, when U/ is not
a hypersurface.

n—r+1 r+1 n—+1
< < _
()= ()< (73
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Enumerative geometry by example

/ﬁ

Suppose somebody asks you the following question:

“How many lines in P3 intersect four given lines?”
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“How many lines in P3 intersect four given lines?”

e The Grassmannian G(1,3) has a Chow ring (or cohomology
ring) A(G(1,3)).
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“How many lines in P3 intersect four given lines?”

e The Grassmannian G(1,3) has a Chow ring (or cohomology
ring) A(G(1,3)).

e A condition on lines in P? gives a subvariety of G(1,3), which
gives a class in A(G(1,3)).
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Enumerative geometry by example

Suppose somebody asks you the following question:
“How many lines in P3 intersect four given lines?”
e The Grassmannian G(1,3) has a Chow ring (or cohomology
ring) A(G(1,3)).
e A condition on lines in P? gives a subvariety of G(1,3), which
gives a class in A(G(1,3)).

e Intersecting subvarieties corresponds to taking products in
A(G(1,3)).
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Enumerative geometry by example

Suppose somebody asks you the following question:

“How many lines in P3 intersect four given lines?”

e The Grassmannian G(1,3) has a Chow ring (or cohomology
ring) A(G(1,3)).

e A condition on lines in P? gives a subvariety of G(1,3), which
gives a class in A(G(1,3)).

e Intersecting subvarieties corresponds to taking products in
A(G(1,3)).

e So our problem becomes: find the class
a=[{T|TNL#0} € A(G(1,3)) and compute a*.
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Computing ¢(n,d) and §(d, n.r)

In the Chow ring A(®(V')), we have two interesting classes for
every k=1,....,n—1.
e The degeneration class 6, = [Sk] = [{(A1,...,Apn_1) €
(V) | tk(Ay) = 1}] € AH(2(V)).
e J; is the class of all complete quadrics for which
Qr-1 € G(k — 1,PV*) is a double hyperplane.
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Computing ¢(n,d) and §(d, n.r)

In the Chow ring A(®(V')), we have two interesting classes for
every k=1,....,n—1.
e The degeneration class 6, = [Sk] = [{(A1,...,Apn_1) €
(V) | tk(Ay) = 1}] € AY(2(V)).
e J; is the class of all complete quadrics for which
Qr-1 € G(k — 1,PV*) is a double hyperplane.
e The characteristic class
Wi = [{(Al, R ,An_l) S (I)(V) | A € H}] S Al((I)(V)),
where H C P(52 A¥ V) is a general hyperplane.
e i is the class of all complete quadrics for which
Qr-1 € G(k — 1,P(V*)) passes through a given element of
G(k — 1,P(V™)).
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Computing ¢(n,d) and §(d, n.r)

In the Chow ring A(®(V')), we have two interesting classes for
every k=1,....,n—1.
e The degeneration class 6, = [Sk] = [{(A1,...,Apn_1) €
(V) | tk(Ag) = 1}] € AN (2(V)).
e J; is the class of all complete quadrics for which
Qr-1 € G(k — 1,PV*) is a double hyperplane.
e The characteristic class
Wi = [{(Al, R ,An_l) S (I)(V) | A € H}] S Al((I)(V)),
where H C P(52 A¥ V) is a general hyperplane.
e i is the class of all complete quadrics for which
Qr-1 € G(k — 1,P(V*)) passes through a given element of
G(k — 1,P(V™)).
We want to compute

(n;rl)fdfl n+1)7d d

o(d,m,r) = pa 16, and ¢(n, d) Zug 0 a1

—

LSSM'’s | Tim Seynnaeve

15/18



Computing ¢(n,d) and §(d, n.r)

("3)—d-1

5(d _ d716 d d) = (n;rl)*d d—1
( ,TL,’F) = Mn—l r an qb(”a )_:LLI /Ln—l'

Two approaches:
e There is an algorithm for computing arbitrary products
Pttt i A(B(V)):

n—1
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("3)—d-1

5(d _ d*lé d d) = (n;rl)*d d—1
( ,TL,’F) = Mn—l r an qb(”a )_:LLI /Ln—l'

Two approaches:

e There is an algorithm for computing arbitrary products
n— b bp-1 . .
Pty O 0 in A(R(V):

o If all a; = 1: reduces to a computation in A(FI(V)).
« Use the relations 2uy = pg_1 + 0 + pgr1-
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Computing ¢(n,d) and §(d, n.r)

("3)—d-1

5(d _ d*lé d d) = (n;rl)*d d—1
( ,TL,’F) = Mn—l r an ¢(n7 )_:LLI /Ln—l'

Two approaches:

e There is an algorithm for computing arbitrary products
n— b bn— H
P 0y 0 in A(R(V)):

o If all a; = 1: reduces to a computation in A(FI(V)).
« Use the relations 2uy = pg_1 + 0 + pgr1-

e The product d(d,n,r) is equal to a product of Segre classes of
certain line bundles in Gr(r,n).

« This allows us to prove that for fixed d,r, 6(d,n,r) and
¢(n,d) are polynomials in n.
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Further directions

/ﬁ

e Skew-symmetric matrices (“type D case") and general
matrices (“type A case").
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Thank you!
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