Linear spaces of symmetric matrices and combinatorial algebraic geometry

Tim Seynnaeve

Max-Planck-Institut für Mathematik in den Naturwissenschaften

LSSM study group July 6, 2020

MAX-PLANCK-GESELLSCHAFT

Let $\mathcal{L} \subset \mathbb{C}^{n \times n}$ be a d-dimensional linear space of symmetric matrices.

Question A

What is the degree of the variety \mathcal{L}^{-1} obtained by inverting all matrices in \mathcal{L} ?

Let $\mathcal{L} \subset \mathbb{C}^{n \times n}$ be a d-dimensional linear space of symmetric matrices.

Question A

What is the degree of the variety \mathcal{L}^{-1} obtained by inverting all matrices in \mathcal{L} ?

Question B

Let $\mathcal{L}_r \subset \mathcal{L}$ be the variety of all rank $\leq r$ matrices in \mathcal{L} , and let \mathcal{L}_r^* be the dual variety. When is \mathcal{L}_r^* a hypersurface, and what is its degree?

Let $\mathcal{L} \subset \mathbb{C}^{n \times n}$ be a d-dimensional linear space of symmetric matrices.

Question A

What is the degree of the variety \mathcal{L}^{-1} obtained by inverting all matrices in \mathcal{L} ?

Question B

Let $\mathcal{L}_r \subset \mathcal{L}$ be the variety of all rank $\leq r$ matrices in \mathcal{L} , and let \mathcal{L}_r^* be the dual variety. When is \mathcal{L}_r^* a hypersurface, and what is its degree?

To make our lives easier, we'll assume that $\mathcal L$ is general.

Let $\mathcal{L} \subset \mathbb{C}^{n \times n}$ be a d-dimensional linear space of symmetric matrices.

Question A

What is the degree of the variety \mathcal{L}^{-1} obtained by inverting all matrices in \mathcal{L} ? $\phi(n,d)$

Question B

Let $\mathcal{L}_r \subset \mathcal{L}$ be the variety of all rank $\leq r$ matrices in \mathcal{L} , and let \mathcal{L}_r^* be the dual variety. When is \mathcal{L}_r^* a hypersurface, and what is its degree? $\delta(d, n, r)$

To make our lives easier, we'll assume that $\mathcal L$ is general.

The *ML*-degree of an LSSM $\mathcal{L} \subset \operatorname{Sym}_2 \mathbb{C}^n$ is the number of critical points of the function $K \mapsto \log (\det K) - \operatorname{tr}(S \cdot K)$ for S generic.

The *ML*-degree of an LSSM $\mathcal{L} \subset \operatorname{Sym}_2 \mathbb{C}^n$ is the number of critical points of the function $K \mapsto \log (\det K) - \operatorname{tr}(S \cdot K)$ for S generic.

Exercise

The critical points are precisely the matrices $K \in \mathcal{L}$ for which $\langle K^{-1}, X \rangle = \langle S, X \rangle$ for all $X \in \mathcal{L}$. (Here $\langle X, Y \rangle := \operatorname{tr}(X \cdot Y)$).

The *ML*-degree of an LSSM $\mathcal{L} \subset \operatorname{Sym}_2 \mathbb{C}^n$ is the number of critical points of the function $K \mapsto \log (\det K) - \operatorname{tr}(S \cdot K)$ for S generic.

Exercise

The critical points are precisely the matrices $K \in \mathcal{L}$ for which $\langle K^{-1}, X \rangle = \langle S, X \rangle$ for all $X \in \mathcal{L}$. (Here $\langle X, Y \rangle := \operatorname{tr}(X \cdot Y)$).

Hint

Write $\mathcal{L} = \text{Span}(K_1, \dots, K_d)$, so that $K = \sum_i \lambda_i K_i$, and put all partial derivatives $\frac{\partial}{\partial \lambda_j}$ equal to 0. Use Jacobi's formula: https://en.wikipedia.org/wiki/Jacobi's_formula.

The *ML*-degree of an LSSM $\mathcal{L} \subset \operatorname{Sym}_2 \mathbb{C}^n$ is the number of critical points of the function $K \mapsto \log (\det K) - \operatorname{tr}(S \cdot K)$ for S generic.

Exercise

The critical points are precisely the matrices $K \in \mathcal{L}$ for which $\langle K^{-1}, X \rangle = \langle S, X \rangle$ for all $X \in \mathcal{L}$. (Here $\langle X, Y \rangle := \operatorname{tr}(X \cdot Y)$).

ML-degree, reformulated

The ML-degree of an LSSM $\mathcal{L}\subset {\rm Sym}_2\,\mathbb{C}^n$ is the number of pairs (K,Σ) with

$$\Sigma \cdot K = Id_n, \ K \in \mathcal{L}, \ \Sigma - S \in \mathcal{L}^{\perp},$$

where $S \in \operatorname{Sym}_2 \mathbb{C}^n$ generic.

The ML-degree of a d-dimenional LSSM $\mathcal{L} \subset \operatorname{Sym}_2 \mathbb{C}^n$ is the number of pairs (K, Σ) with

$$\Sigma \cdot K = Id_n, \ K \in \mathcal{L}, \ \Sigma - S \in \mathcal{L}^{\perp},$$

where $S \in \operatorname{Sym}_2 \mathbb{C}^n$ generic

The ML-degree of a d-dimenional LSSM $\mathcal{L} \subset \operatorname{Sym}_2 \mathbb{C}^n$ is the number of pairs (K, Σ) with

$$\Sigma \cdot K = Id_n, \ K \in \mathcal{L}, \ \Sigma - S \in \mathcal{L}^{\perp},$$

where $S \in \operatorname{Sym}_2 \mathbb{C}^n$ generic

Hard fact

If ${\mathcal L}$ is general, we can replace ${\mathcal L}^\perp$ by a general space of the same dimension.

The ML-degree of a general $d\text{-dimenional LSSM }\mathcal{L}\subset \operatorname{Sym}_2\mathbb{C}^n$ is the number of pairs (K,Σ) with

$$\Sigma \cdot K = Id_n, \ K \in \mathcal{L}, \ \Sigma - S \in \mathcal{M},$$

where $S \in \text{Sym}_2 \mathbb{C}^n$ generic and \mathcal{M} is a general LSSM of codimension d.

Hard fact

If ${\mathcal L}$ is general, we can replace ${\mathcal L}^\perp$ by a general space of the same dimension.

The ML-degree of a general $d\text{-dimenional LSSM }\mathcal{L}\subset \operatorname{Sym}_2\mathbb{C}^n$ is the number of pairs (K,Σ) with

$$\Sigma \cdot K = Id_n, \ K \in \mathcal{L}, \ \Sigma - S \in \mathcal{M},$$

where $S \in Sym_2 \mathbb{C}^n$ generic and \mathcal{M} is a general LSSM of codimension d.

Hard fact

If ${\mathcal L}$ is general, we can replace ${\mathcal L}^\perp$ by a general space of the same dimension.

So for general \mathcal{L} , the ML-degree equals $\deg(\mathcal{L}^{-1}) = \phi(n, d)$.

The ML-degree of a general $d\text{-dimenional LSSM }\mathcal{L}\subset \operatorname{Sym}_2\mathbb{C}^n$ is the number of pairs (K,Σ) with

$$\Sigma \cdot K = Id_n, \ K \in \mathcal{L}, \ \Sigma - S \in \mathcal{M},$$

where $S \in \text{Sym}_2 \mathbb{C}^n$ generic and \mathcal{M} is a general LSSM of codimension d.

Hard fact

If ${\cal L}$ is general, we can replace ${\cal L}^\perp$ by a general space of the same dimension.

So for general \mathcal{L} , the ML-degree equals $\deg(\mathcal{L}^{-1}) = \phi(n, d)$.

For special \mathcal{L} (e.g. Gaussian graphical models), there are 2 interesting numbers to compute: $\deg(\mathcal{L}^{-1})$ and the ML-degree.

ML-degrees

Let V be an n-dimensional vector space.

ML-degrees

Let V be an n-dimensional vector space.

Question A, projectivized

 $\phi(n,d)$ is the number of pairs $(K,\Sigma)\in \mathbb{P}(S^2V)\times \mathbb{P}(S^2V^*)$ with

$$\Sigma \cdot K = Id_n, \ K \in \mathcal{L}, \ \Sigma \in \mathcal{M},$$

where $\mathcal{L} \subset \mathbb{P}(S^2V)$ and $\mathcal{M} \subset \mathbb{P}(S^2V^*)$ are general projective LSSMs, of dimension (d-1) respectively codimension (d-1).

ML-degrees

Let V be an n-dimensional vector space.

Question A, projectivized

 $\phi(n,d)$ is the number of pairs $(K,\Sigma)\in \mathbb{P}(S^2V)\times \mathbb{P}(S^2V^*)$ with

$$\Sigma \cdot K = Id_n, \ K \in \mathcal{L}, \ \Sigma \in \mathcal{M},$$

where $\mathcal{L} \subset \mathbb{P}(S^2V)$ and $\mathcal{M} \subset \mathbb{P}(S^2V^*)$ are general projective LSSMs, of dimension (d-1) respectively codimension (d-1).

 $X \subset \mathbb{P}(S^2V) \times \mathbb{P}(S^2V^*)$ the variety parametrized by (K, K^{-1}) . The points of X are all pairs $(K, \Sigma) \in \mathbb{P}(S^2V) \times \mathbb{P}(S^2V^*)$ with $K \cdot \Sigma = Id_n$ or $K \cdot \Sigma = 0$.

Let V be an n-dimensional vector space.

Question A, projectivized

 $\phi(n,d)$ is the number of pairs $(K,\Sigma)\in \mathbb{P}(S^2V)\times \mathbb{P}(S^2V^*)$ with

$$\Sigma \cdot K = Id_n, \ K \in \mathcal{L}, \ \Sigma \in \mathcal{M},$$

where $\mathcal{L} \subset \mathbb{P}(S^2V)$ and $\mathcal{M} \subset \mathbb{P}(S^2V^*)$ are general projective LSSMs, of dimension (d-1) respectively codimension (d-1).

 $X \subset \mathbb{P}(S^2V) \times \mathbb{P}(S^2V^*)$ the variety parametrized by (K, K^{-1}) . The points of X are all pairs $(K, \Sigma) \in \mathbb{P}(S^2V) \times \mathbb{P}(S^2V^*)$ with $K \cdot \Sigma = Id_n$ or $K \cdot \Sigma = 0$. Technical difficulty: X is singular. We will replace it with a smooth variety: *the space of complete quadrics*.

Let $\mathcal{V} \subseteq \mathcal{U} \subseteq \operatorname{Sym}_2(\mathbb{R}^n)$ be LSSM's, with $\dim(\mathcal{V}) = d - 1$ and $\dim(\mathcal{U}) = d + 1$. The KKT equations can be written as:

$$X \in \mathcal{V}^{\perp}, Y \in \mathcal{U}, X \cdot Y = 0.$$

For generic \mathcal{U} and \mathcal{V} , the number of solutions (X, Y) with $\operatorname{rk}(X) = r$ and $\operatorname{rk}(Y) = n - r$ is known as the algebraic degree of semidefinite programming, written $\delta(d, n, r)$.

Let $V = \mathbb{C}^n$ and let $\mathcal{V} \subseteq \mathcal{U} \subseteq \mathbb{P}(\operatorname{Sym}_2(V))$ be LSSM's, with $\dim(\mathcal{V}) = d - 2$ and $\dim(\mathcal{U}) = d$. $\delta(d, n, r)$ is the number of solutions to:

$$X \in \mathcal{V}^{\perp}, Y \in \mathcal{U}, X \cdot Y = 0.$$

with $\operatorname{rk}(X) = r$ and $\operatorname{rk}(Y) = n - r$.

Let $V = \mathbb{C}^n$ and let $\mathcal{V} \subseteq \mathcal{U} \subseteq \mathbb{P}(\operatorname{Sym}_2(V))$ be LSSM's, with $\dim(\mathcal{V}) = d - 2$ and $\dim(\mathcal{U}) = d$. $\delta(d, n, r)$ is the number of solutions to:

$$X \in \mathcal{V}^{\perp}, Y \in \mathcal{U}, X \cdot Y = 0.$$

with $\operatorname{rk}(X) = r$ and $\operatorname{rk}(Y) = n - r$.

Fact

Let $\mathcal{L}_r \subset \mathcal{L}$ be the variety of all rank $\leq r$ matrices in \mathcal{L} , and let \mathcal{L}_r^* be the dual variety. If \mathcal{L}_r^* a hypersurface, then it's degree is equal to $\delta(d, n, r)$.

Key point: for $Y \in \mathcal{D}_r \subseteq \mathbb{P}(S^2V)$, the hyperplanes tangent to \mathcal{D}_r are precisely the $X \in \mathbb{P}(S^2V^*)$ with $X \cdot Y = 0$.

Let $V = \mathbb{C}^n$ and let $\mathcal{U} \subseteq \mathbb{P}(\operatorname{Sym}_2(V))$, $\mathcal{W} \subseteq \mathbb{P}(\operatorname{Sym}_2(V^*))$ be general LSSM's, with $\operatorname{codim}(\mathcal{V}) = d - 1$ and $\dim(\mathcal{U}) = d$. $\delta(d, n, r)$ is the number of solutions to:

$$X \in \mathcal{W}, Y \in \mathcal{U}, X \cdot Y = 0$$

with rk(X) = r and rk(Y) = n - r.

Fact

Let $\mathcal{L}_r \subset \mathcal{L}$ be the variety of all rank $\leq r$ matrices in \mathcal{L} , and let \mathcal{L}_r^* be the dual variety. If \mathcal{L}_r^* a hypersurface, then it's degree is equal to $\delta(d, n, r)$.

Key point: for $Y \in \mathcal{D}_r \subseteq \mathbb{P}(S^2V)$, the hyperplanes tangent to \mathcal{D}_r are precisely the $X \in \mathbb{P}(S^2V^*)$ with $X \cdot Y = 0$.

•
$$\bigwedge^1 A = A$$
, $\bigwedge^{n-1} A = \operatorname{adj}(A)$.

•
$$\bigwedge^1 A = A$$
, $\bigwedge^{n-1} A = \operatorname{adj}(A)$.

• Coordinate-free: if $A: V^* \to V$, then $\bigwedge^k A: \bigwedge^k V^* \to \bigwedge^k V$.

•
$$\bigwedge^1 A = A$$
, $\bigwedge^{n-1} A = \operatorname{adj}(A)$.

• Coordinate-free: if $A: V^* \to V$, then $\bigwedge^k A: \bigwedge^k V^* \to \bigwedge^k V$.

Definition

The space $\Phi(V)$ of complete quadrics is the closure of the image of the set of invertible matrices under the map

$$\varphi: \mathbb{P}(S^2V) \hookrightarrow \mathbb{P}\left(S^2V\right) \times \mathbb{P}\left(S^2(\bigwedge^2 V)\right) \times \cdots \times \mathbb{P}\left(S^2(\bigwedge^{n-1}V)\right),$$

sending a matrix A to $(A, \bigwedge^2 A, \dots, \bigwedge^{n-1} A)$.

• $\phi(n,d) = |\pi_1^{-1}(\mathcal{L}) \cap \pi_{n-1}^{-1}(\mathcal{M})|$, where $\dim(\mathcal{L}) = d-1$ and $\operatorname{codim}(\mathcal{M}) = d-1$.

- $\phi(n,d) = |\pi_1^{-1}(\mathcal{L}) \cap \pi_{n-1}^{-1}(\mathcal{M})|$, where $\dim(\mathcal{L}) = d-1$ and $\operatorname{codim}(\mathcal{M}) = d-1$.
- $\delta(d, n, r) = |\pi_1^{-1}(\mathcal{U}) \cap \pi_{n-1}^{-1}(\mathcal{V}) \cap S_r|$, where $\dim(\mathcal{U}) = d$, $\operatorname{codim}(\mathcal{V}) = d 1$, and

- $\phi(n,d) = |\pi_1^{-1}(\mathcal{L}) \cap \pi_{n-1}^{-1}(\mathcal{M})|$, where $\dim(\mathcal{L}) = d-1$ and $\operatorname{codim}(\mathcal{M}) = d-1$.
- $\delta(d, n, r) = |\pi_1^{-1}(\mathcal{U}) \cap \pi_{n-1}^{-1}(\mathcal{V}) \cap S_r|$, where $\dim(\mathcal{U}) = d$, $\operatorname{codim}(\mathcal{V}) = d 1$, and

$$S_r = \{ (A_1, \dots, A_{n-1}) \in \Phi(V) \mid \operatorname{rk} A_r = 1 \}$$

= cl { (A₁, ..., A_{n-1}) \epsilon \Phi(V) | rk A₁ = r }
= cl { (A₁, ..., A_{n-1}) \epsilon \Phi(V) | rk A_{n-1} = n - r }.

• $\bigwedge^k A$ defines a quadric hypersurface $Q(\bigwedge^k A)$ in the Grassmannian $\mathbb{G}(k-1,\mathbb{P}V^*)$, consisting of all k-planes tangent to Q.

- $\bigwedge^k A$ defines a quadric hypersurface $Q(\bigwedge^k A)$ in the Grassmannian $\mathbb{G}(k-1,\mathbb{P}V^*)$, consisting of all k-planes tangent to Q.
- \bullet More precisely: being tangent to Q is given by the quadratic relation

$$P^T(\bigwedge^k A)P = 0.$$

in the Plücker coordinates of a (k-1)-plane.

- $\bigwedge^k A$ defines a quadric hypersurface $Q(\bigwedge^k A)$ in the Grassmannian $\mathbb{G}(k-1,\mathbb{P}V^*)$, consisting of all k-planes tangent to Q.
- \bullet More precisely: being tangent to Q is given by the quadratic relation

$$P^T(\bigwedge^k A)P = 0.$$

in the Plücker coordinates of a (k-1)-plane.

- So a point in $\mathcal{A} = (A_1, \dots, A_{n-1}) \in \Phi(V)$ is given by a collection of (possibly nonsmooth) quadrics $Q_i = Q(A_{i+1}) \subset \mathbb{G}(i, \mathbb{P}V^*).$
- For a general A, all Q_i are smooth, and Q_i is the space of *i*-planes tangent to Q_0 .

Example: n=2

$$\begin{pmatrix} -\varepsilon & 0 & 0\\ 0 & \varepsilon & 0\\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & \varepsilon \end{pmatrix})$$

is a point in $\Phi(V)$:

- $Q_0: \ \varepsilon x_0^2 = \varepsilon x_1^2 + x_2^2$, a smooth conic in $\mathbb{P}(V^*)$
- Q_1 : $\beta_0^2 = \beta_1^2 + \varepsilon \beta_2^2$, a smooth conic in $\mathbb{P}(V)$ (i.e. a line $\beta_0 x_0 + \beta_1 x_1 + \beta_2 x_2 = 0$ is tangent to Q_0 if and only if $\beta_0^2 = \beta_1^2 + \varepsilon \beta_2^2$.)

Example: n=2

$$\begin{pmatrix} -\varepsilon & 0 & 0\\ 0 & \varepsilon & 0\\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & \varepsilon \end{pmatrix})$$

is a point in $\Phi(V)$:

- $Q_0: \ \varepsilon x_0^2 = \varepsilon x_1^2 + x_2^2$, a smooth conic in $\mathbb{P}(V^*)$
- $Q_1: \ \beta_0^2 = \beta_1^2 + \varepsilon \beta_2^2$, a smooth conic in $\mathbb{P}(V)$ (i.e. a line $\beta_0 x_0 + \beta_1 x_1 + \beta_2 x_2 = 0$ is tangent to Q_0 if and only if $\beta_0^2 = \beta_1^2 + \varepsilon \beta_2^2$.) Now let $\varepsilon \to 0$.

Example: n=2

$$(\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix})$$

- is a point in $\Phi(V)$:
 - Q_0 : $x_2^2 = 0$, a double line in $\mathbb{P}(V^*)$
 - $Q_1: \beta_0^2 = \beta_1^2$, two lines in $\mathbb{P}(V)$ (i.e. a line $\beta_0 x_0 + \beta_1 x_1 + \beta_2 x_2 = 0$ is "tangent to Q_0 " if and only if $\beta_0 = \pm \beta_1$, if and only if the line goes through [1:1:0] or [1:-1:0].)

• $\phi(n,d) = |\pi_1^{-1}(\mathcal{L}) \cap \pi_{n-1}^{-1}(\mathcal{M})|$ is the number of complete quadrics $\mathcal{A} \in \Phi(V)$ s.t. Q_0 contains $\binom{n+1}{2} - d$ given points and Q_{n-2} contains d-1 given points.

- $\phi(n,d) = |\pi_1^{-1}(\mathcal{L}) \cap \pi_{n-1}^{-1}(\mathcal{M})|$ is the number of complete quadrics $\mathcal{A} \in \Phi(V)$ s.t. Q_0 contains $\binom{n+1}{2} d$ given points and Q_{n-2} contains d-1 given points.
- δ(d, n, r) = |π₁⁻¹(U) ∩ π_{n-1}⁻¹(V) ∩ S_r| is the number of complete quadrics A ∈ S_r s.t. Q₀ contains (ⁿ⁺¹₂) − d − 1 given points and Q_{n-2} contains d − 1 given points.

- $\phi(n,d) = |\pi_1^{-1}(\mathcal{L}) \cap \pi_{n-1}^{-1}(\mathcal{M})|$ is the number of complete quadrics $\mathcal{A} \in \Phi(V)$ s.t. Q_0 contains $\binom{n+1}{2} d$ given points and Q_{n-2} contains d-1 given points.
- δ(d, n, r) = |π₁⁻¹(U) ∩ π_{n-1}⁻¹(V) ∩ S_r| is the number of complete quadrics A ∈ S_r s.t. Q₀ contains (ⁿ⁺¹₂) − d − 1 given points and Q_{n-2} contains d − 1 given points.

Remark

It can happen that $\delta(d, n, r) = 0$, namely when *Pataki's inequalities* below are not satisfied, or equivalently, when \mathcal{U}_r^* is not a hypersurface.

$$\binom{n-r+1}{2} \le d, \binom{r+1}{2} \le \binom{n+1}{2} - d$$

"How many lines in \mathbb{P}^3 intersect four given lines?"

• The Grassmannian $\mathbb{G}(1,3)$ has a Chow ring (or cohomology ring) $A(\mathbb{G}(1,3)).$

- The Grassmannian $\mathbb{G}(1,3)$ has a Chow ring (or cohomology ring) $A(\mathbb{G}(1,3)).$
- A condition on lines in \mathbb{P}^3 gives a subvariety of $\mathbb{G}(1,3),$ which gives a class in $A(\mathbb{G}(1,3)).$

- The Grassmannian $\mathbb{G}(1,3)$ has a *Chow ring* (or cohomology ring) $A(\mathbb{G}(1,3))$.
- A condition on lines in \mathbb{P}^3 gives a subvariety of $\mathbb{G}(1,3),$ which gives a class in $A(\mathbb{G}(1,3)).$
- Intersecting subvarieties corresponds to taking products in $A(\mathbb{G}(1,3)).$

- The Grassmannian $\mathbb{G}(1,3)$ has a *Chow ring* (or cohomology ring) $A(\mathbb{G}(1,3))$.
- A condition on lines in \mathbb{P}^3 gives a subvariety of $\mathbb{G}(1,3)$, which gives a class in $A(\mathbb{G}(1,3))$.
- Intersecting subvarieties corresponds to taking products in $A(\mathbb{G}(1,3)).$
- So our problem becomes: find the class $\alpha = [\{\Gamma \mid \Gamma \cap L \neq \emptyset\}] \in A(\mathbb{G}(1,3)) \text{ and compute } \alpha^4.$

In the Chow ring $A(\Phi(V)),$ we have two interesting classes for every $k=1,\ldots,n-1.$

- The degeneration class $\delta_k = [S_k] = [\{(A_1, \dots, A_{n-1}) \in \Phi(V) \mid \operatorname{rk}(A_k) = 1\}] \in A^1(\Phi(V)).$
- δ_k is the class of all complete quadrics for which $Q_{k-1} \subseteq \mathbb{G}(k-1, \mathbb{P}V^*)$ is a double hyperplane.

In the Chow ring $A(\Phi(V)),$ we have two interesting classes for every $k=1,\ldots,n-1.$

- The degeneration class $\delta_k = [S_k] = [\{(A_1, \dots, A_{n-1}) \in \Phi(V) \mid \operatorname{rk}(A_k) = 1\}] \in A^1(\Phi(V)).$
- δ_k is the class of all complete quadrics for which $Q_{k-1} \subseteq \mathbb{G}(k-1, \mathbb{P}V^*)$ is a double hyperplane.
- The characteristic class $\mu_k = [\{(A_1, \dots, A_{n-1}) \in \Phi(V) \mid A_k \in H\}] \in A^1(\Phi(V)),$ where $H \subset \mathbb{P}(S^2 \bigwedge^k V)$ is a general hyperplane.
- μ_k is the class of all complete quadrics for which $Q_{k-1} \subseteq \mathbb{G}(k-1, \mathbb{P}(V^*))$ passes through a given element of $\mathbb{G}(k-1, \mathbb{P}(V^*))$.

In the Chow ring $A(\Phi(V)),$ we have two interesting classes for every $k=1,\ldots,n-1.$

- The degeneration class $\delta_k = [S_k] = [\{(A_1, \dots, A_{n-1}) \in \Phi(V) \mid \operatorname{rk}(A_k) = 1\}] \in A^1(\Phi(V)).$
- δ_k is the class of all complete quadrics for which $Q_{k-1} \subseteq \mathbb{G}(k-1, \mathbb{P}V^*)$ is a double hyperplane.
- The characteristic class $\mu_k = [\{(A_1, \dots, A_{n-1}) \in \Phi(V) \mid A_k \in H\}] \in A^1(\Phi(V)),$ where $H \subset \mathbb{P}(S^2 \bigwedge^k V)$ is a general hyperplane.
- μ_k is the class of all complete quadrics for which $Q_{k-1} \subseteq \mathbb{G}(k-1, \mathbb{P}(V^*))$ passes through a given element of $\mathbb{G}(k-1, \mathbb{P}(V^*))$.

We want to compute

$$\delta(d,n,r) = \mu_1^{\binom{n+1}{2}-d-1} \mu_{n-1}^{d-1} \delta_r \text{ and } \phi(n,d) = \mu_1^{\binom{n+1}{2}-d} \mu_{n-1}^{d-1}.$$

$$\delta(d,n,r) = \mu_1^{\binom{n+1}{2}-d-1} \mu_{n-1}^{d-1} \delta_r \ \text{ and } \ \phi(n,d) = \mu_1^{\binom{n+1}{2}-d} \mu_{n-1}^{d-1}.$$

Two approaches:

• There is an algorithm for computing arbitrary products $\mu_1^{a_1}\cdots\mu_{n-1}^{a_{n-1}}\cdot\delta_1^{b_1}\cdots\delta_{n-1}^{b_{n-1}}$ in $A(\Phi(V))$:

$$\delta(d,n,r) = \mu_1^{\binom{n+1}{2}-d-1} \mu_{n-1}^{d-1} \delta_r \ \text{ and } \ \phi(n,d) = \mu_1^{\binom{n+1}{2}-d} \mu_{n-1}^{d-1}.$$

Two approaches:

- There is an algorithm for computing arbitrary products $\mu_1^{a_1}\cdots\mu_{n-1}^{a_{n-1}}\cdot\delta_1^{b_1}\cdots\delta_{n-1}^{b_{n-1}}$ in $A(\Phi(V))$:
 - If all $a_i = 1$: reduces to a computation in A(Fl(V)).
 - Use the relations $2\mu_k = \mu_{k-1} + \delta_k + \mu_{k+1}$.

$$\delta(d,n,r) = \mu_1^{\binom{n+1}{2}-d-1} \mu_{n-1}^{d-1} \delta_r \ \text{ and } \ \phi(n,d) = \mu_1^{\binom{n+1}{2}-d} \mu_{n-1}^{d-1}.$$

Two approaches:

- There is an algorithm for computing arbitrary products $\mu_1^{a_1}\cdots\mu_{n-1}^{a_{n-1}}\cdot\delta_1^{b_1}\cdots\delta_{n-1}^{b_{n-1}}$ in $A(\Phi(V))$:
 - If all $a_i = 1$: reduces to a computation in A(Fl(V)).
 - Use the relations $2\mu_k = \mu_{k-1} + \delta_k + \mu_{k+1}$.
- The product $\delta(d, n, r)$ is equal to a product of Segre classes of certain line bundles in Gr(r, n).
 - This allows us to prove that for fixed $d,r,\,\delta(d,n,r)$ and $\phi(n,d)$ are polynomials in n.

Further directions

• Skew-symmetric matrices ("type *D* case") and general matrices ("type *A* case").

Further directions

- Skew-symmetric matrices ("type *D* case") and general matrices ("type *A* case").
- Equivariant K-theory/cohomology of $\Phi(V)$.

Further directions

 \square

- Skew-symmetric matrices ("type *D* case") and general matrices ("type *A* case").
- Equivariant K-theory/cohomology of $\Phi(V)$.
- Nongeneric *L* (Gaussian graphical models).

- Skew-symmetric matrices ("type *D* case") and general matrices ("type *A* case").
- Equivariant K-theory/cohomology of $\Phi(V)$.
- Nongeneric *L* (Gaussian graphical models).
- Maximum likelihood degree for linear *covariance* models.

Thank you!