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Differential Equations for Gaussian Statistical Models with Rational Maximum
Likelihood Estimator\ast 
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Abstract. We study multivariate Gaussian statistical models whose maximum likelihood estimator (MLE) is
a rational function of the observed data. We establish a one-to-one correspondence between such
models and the solutions to a nonlinear first-order partial differential equation (PDE). Using our
correspondence, we reinterpret familiar classes of models with rational MLE, such as directed (and
decomposable undirected) Gaussian graphical models. We also find new models with rational MLE.
For linear concentration models with rational MLE, we show that homaloidal polynomials from
birational geometry lead to solutions to the PDE. We thus shed light on the problem of classifying
Gaussian models with rational MLE by relating it to the open problem in birational geometry of
classifying homaloidal polynomials.
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1. Introduction. The maximum likelihood degree (ML degree) of a statistical model is
the number of complex critical points of the likelihood function given general data. It was
introduced in [7] for discrete statistical models and in [37] for Gaussian models. For models
with ML degree one, the likelihood function for general data has a unique critical point,
which is the maximum likelihood estimate given that data. The maximum likelihood estimator
(MLE) is the function that maps data to its maximum likelihood estimate. A model has ML
degree one if and only if the MLE is a rational function of the data.

A classification of discrete statistical models of ML degree one was obtained in [18, 26].
The classification follows a two-step procedure. The first step shows that discrete models of
ML degree one are the solutions to a system of partial differential equations (PDEs) [26,
Lemma 15]. The second step uses Horn uniformization to parametrize all solutions to the
PDEs [26, Lemma 16].
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This article pursues the analogous classification for Gaussian models of ML degree one.
We show that varieties of Gaussian ML degree one are in bijection with solutions to a non-
linear first-order PDE. This is analogous to the first step of [26]. For the second step, we
show that parametrizing the solutions to our PDE specializes to an open problem in classical
algebraic geometry concerning homaloidal polynomials, which have been extensively studied
[13, 15, 25, 35]. We leave it as an open problem for future work to parametrize all solutions
to our homaloidal PDE.

Other related work. The concept of ML degree fits into the perspective of likelihood
geometry, introduced by Huh and Sturmfels [27] and part of the field of algebraic statistics [38].
In the discrete setting, Huh [24] studied the ML degree of a very affine variety and showed
that, for smooth varieties, the ML degree is equal to the topological Euler characteristic.
ML degrees have been studied for toric varieties, which in statistics correspond to discrete
exponential families [1]. In particular, Garcia-Puente and Sottile showed that the discrete
statistical model associated to a toric patch has ML degree one if and only if a certain Laurent
polynomial associated to the toric patch is homaloidal with respect to the logarithmic toric
differential [21]. This highlights another setting where a homaloidal-like property is related
to models with ML degree one. Graf von Bothmer, Ranestad, and Sottile then used this
relationship to classify two-dimensional toric patches whose discrete statistical models have
ML degree one [22].

In the Gaussian setting, the focus has largely been on linear concentration models, i.e.,
models where the inverse covariance matrices lie on a linear space of symmetric matrices
[2, 3, 5, 10, 19, 20, 28, 30, 32]. Further work relates ML degrees to Euler characteristics in
the Gaussian setting [12]. The ML degree was also studied for exponential varieties [33].

We now introduce our main concepts. Let\scrM be a semialgebraic subset of the cone of real
positive definite symmetric m\times m matrices. We regard\scrM as a set of concentration (inverse
covariance) matrices parametrizing a mean-centered Gaussian statistical model. We typically
assume that \scrM is scaling-invariant; that is, K \in \scrM implies \lambda K \in \scrM for all positive scalars
\lambda \in \BbbR . That is, rescaling of measurements does not affect membership in the model. Given
data Y1, . . . , Yn \in \BbbR m, the Gaussian log-likelihood function is

\ell S :\scrM \rightarrow \BbbR , K \mapsto \rightarrow n

2
(logdet(K) - tr(KS) - m log(2\pi )),(1.1)

where S = 1
n

\sum n
i=1 YiY

\top 
i is the sample covariance matrix. In contrast, the points in the model

are parametrized by concentration matrices. We choose this parametrization to make the
trace term linear in both arguments: the trace term is a canonical pairing of a vector space
with its dual. We will find this perspective helpful later.

We pass from statistical models to algebraic varieties. We denote the Zariski closure of
the complexification of\scrM by X. The log-likelihood function extends to a function \ell S on X.
The ML degree of X is the number of complex critical points of this function for a general
complex symmetric m\times m matrix S \in Sym2(\BbbC m).

The rest of this paper is organized as follows. We reinterpret the Gaussian log-likelihood
function in a coordinate-free context, using projective varieties and homogeneous polynomials
in section 2. We introduce the homaloidal PDE in section 3. Our main result is a one-to-
one correspondence between varieties of Gaussian ML degree one and solutions to the PDE
(Theorem 3.5). Equally important is a parallel result on another PDE which is uniquely
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satisfied by the MLEs of such varieties (Theorem 3.1). We study solutions to the homa-
loidal PDE coming from linear spaces in section 4 and find that the linear spaces of ML
degree one correspond to homaloidal polynomials. We revisit known families of Gaussian
graphical models with ML degree one in section 5, where we also formulate our main result
in terms of usual Gaussian statistical models (Corollary 5.3). We take first steps towards
parametrizing the solutions to the PDE in section 6 and produce new ML degree one varieties
in section 7. Code for our computational examples can be found at the MathRepo repository
https://mathrepo.mis.mpg.de/GaussianMLDeg1.

2. A coordinate-free Gaussian likelihood function. This section gives a coordinate-free
definition of the Gaussian ML degree of an embedded variety, extending ideas from [12, 33]. In
this paper, \scrL denotes a finite-dimensional \BbbC -vector space. Before focusing on the ML degree,
we recall that the Jacobian of a rational map \varphi :X   \dashrightarrow Y between algebraic varieties X and
Y is a rational map

J\varphi :X   \dashrightarrow Hom(TX,TY ), p \mapsto \rightarrow Jp\varphi : TpX\rightarrow TpY.

If X =\scrL , we identify the tangent space Tp\scrL with \scrL . In this case, the Jacobian of \varphi :\scrL   \dashrightarrow \BbbC 
is the gradient

\nabla \varphi :\scrL   \dashrightarrow \scrL \ast , p \mapsto \rightarrow \nabla p\varphi .

We give a coordinate-free definition of the Gaussian ML degree of a varietyX\subseteq Sym2(\BbbC m).
This definition replaces the space of symmetric matrices by an arbitrary ambient linear space
\scrL . This offers a simplification when X lies in a low-dimensional affine subspace of the space
of symmetric matrices. Indeed, it allows us to consider only data belonging to that linear
subspace instead of having to account for the whole of Sym2. We show in Proposition 2.5 that
the coordinate-free Gaussian ML degree is equivalent to the Gaussian ML degree previously
studied in the literature. The latter is defined as the number of critical points K of the
log-likelihood function (1.1); see, e.g., [37] and [17, Def. 2.1.4, Prop. 2.1.12].

In the definition below, we count the critical points of a function \ell on X. Note that \ell can
only be differentiated along X at its smooth locus X\mathrm{s}\mathrm{m}.

Definition 2.1. Let \scrL be a finite-dimensional \BbbC -vector space, let X \subseteq \scrL be an affine variety,
and fix a polynomial F on \scrL . For \bfitu \in \scrL \ast and p\in \scrL \setminus V (F ), the (Gaussian) log-likelihood is

\ell F,\bfitu (p) := log(F (p)) - \bfitu (p).

The (Gaussian) ML degree of X with respect to F , denoted MLDF (X), is the number of
critical points of \ell F,\bfitu over the domain X\mathrm{s}\mathrm{m} \setminus V (F ) for general \bfitu .

Remark 2.2. To define the log-likelihood \ell F,\bfitu as a function on \scrL \setminus V (F ) we must choose a
local branch of the logarithm around each p \in \scrL \setminus V (F ). The gradient \nabla p\ell F,\bfitu \in \scrL \ast does not
depend on this choice. The number MLDF (X) is the cardinality of the set

\scrC := \{ p\in X\mathrm{s}\mathrm{m} \setminus V (F ) | TpX \subseteq ker(\nabla p\ell F,\bfitu )\} 

for general \bfitu . This cardinality does not depend on (general) \bfitu . Moreover, \scrC is reduced as a
scheme; cf. [12, Lemma 2.5].
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Remark 2.3. The ML degree of a variety with respect to a polynomial F is the sum of
the ML degrees of its connected components since TpX \subseteq ker(\nabla p\ell F,\bfitu ) is a local condition in
p. The above still holds if we replace ``connected"" by ``irreducible"" since the intersection of
irreducible components is never part of the smooth locus. For this reason, we assume from
now on that X is irreducible.

The following lemma gives the sense in which MLDF (X) is independent of the choice of
embedding of X into a linear space.

Lemma 2.4. Let \scrL and \scrL \prime be finite-dimensional \BbbC -vector spaces, X \subseteq \scrL an affine variety,
G a polynomial on \scrL \prime , and \scrA : \scrL \rightarrow \scrL \prime an affine-linear embedding. Define F = G \circ \scrA . Then
MLDF (X) =MLDG(\scrA (X)).

Proof. Let \scrA \ast : (\scrL \prime )\ast \rightarrow \scrL \ast be the dual affine-linear map. For \bfitu \prime \in (\scrL \prime )\ast and p\in X,

\ell G,\bfitu \prime (\scrA (p)) = logG(\scrA (p)) - \bfitu \prime (\scrA (p)) = logF (p) - \scrA \ast (\bfitu \prime )(p) = \ell F,\scrA \ast (\bfitu \prime )(p).

Thus, the critical points of \ell G,\bfitu \prime over \scrA (X) correspond one-to-one with the critical points of
\ell F,\scrA \ast (\bfitu \prime ) over X. Since \scrA \ast is surjective, a general \bfitu \in \scrL \ast has the form \scrA \ast (\bfitu \prime ) for a general
\bfitu \prime \in (\scrL \prime )\ast . This completes the proof.

We now prove the equivalence of the usual and coordinate-free ML degrees.

Proposition 2.5. Let det denote the determinant on Sym2(\BbbC m).
(a) Let X be a subvariety of Sym2(\BbbC m). Then MLD\mathrm{d}\mathrm{e}\mathrm{t}(X) is the usual Gaussian ML

degree of X.
(b) Conversely, let \scrL be a finite-dimensional \BbbC -vector space, X \subseteq \scrL a variety, and F a

polynomial on \scrL . Then there exists an affine-linear embedding \scrA : \scrL \rightarrow Sym2(\BbbC m)
such that MLDF (X) =MLD\mathrm{d}\mathrm{e}\mathrm{t}(\scrA (X)).

Proof. Set F =det in Definition 2.1. A generic linear form \bfitu has the form \bfitu (K) = tr(KS),
for S \in Sym2(\BbbC m) generic, since the trace induces an isomorphism of Sym2(\BbbC m) with its dual.
This proves (a).

For (b), let k=dim(\scrL ). There exist symmetric matrices A0, . . . ,Ak, such that

F (x) = detA(x), where A(x) :=A0 +

k\sum 
i=1

xiAi,(2.1)

by [36, Theorem 13]. Let m be the size of the Ai. If the A1, . . . ,Ak are linearly indepen-
dent, then sending a basis of \scrL to the tuple (A0 + A1, . . . ,A0 + Ak) gives an affine-linear
embedding \scrA :\scrL \rightarrow Sym2(\BbbC m) with MLDF (X) =MLD\mathrm{d}\mathrm{e}\mathrm{t}(\scrA (X)), by Lemma 2.4. Otherwise,
let \{ Ar, . . . ,Ak\} be a maximal linearly independent subset of \{ A1, . . . ,Ak\} , possibly after
reordering. If r\leq m, let

B :=

\biggl( 
D A(x)
A(x) 0

\biggr) 
where D := diag(x1, . . . , xr - 1,0, . . . ,0)\in Sym2(\BbbC m).

Then detB = detA(x)2 = F 2. Furthermore, we have B(x) = B0 +
\sum k

i=1 xiBi with linearly
independent B1, . . . ,Bk. Define the embedding \scrA :\scrL \rightarrow Sym2(\BbbC 2m) by sending a basis of \scrL to
(B0 +B1, . . . ,B0 +Bk). Observe that
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MLDF (X) =MLD\lambda Fn(X)(2.2)

for any nonzero scalar \lambda and positive integer n, since \nabla p\ell \lambda Fn,\bfitu = n\nabla p logF  - \bfitu . Hence
MLD\mathrm{d}\mathrm{e}\mathrm{t}(\scrA (X)) =MLDF 2(X) =MLDF (X) and we are done.

If r > m, we increase the size of A(x) by taking the direct sum with a suitably large
identity matrix. We then apply the same argument to the resulting matrix B.

The previous proof shows that the choice of \scrA does not matter for computing MLDF (X),
provided \scrA satisfies

\lambda Fn =det\circ \scrA for some \lambda \in \BbbC \ast and n\in \BbbN .

We give a hands-on example of the construction in the previous proof when the matrices Ai

are linearly dependent.

Example 2.6. Let F (x1, x2, x3) = (x1 + x3)(x2 + x3). Then F (x) = detA(x), where

A(x) = x1A1 + x2A2 + x3A3 =

\biggl( 
x1 + x3 0

0 x2 + x3

\biggr) 
.

However, the matrices Ai relate via A1 =A3 - A2. Using the proof of Proposition 2.5(b) with
r=m= 2, we write F 2 as the determinant of the matrix

3\sum 
i=1

xiBi =

\left(    
x1 0 x1 + x3 0
0 0 0 x2 + x3

x1 + x3 0 0 0
0 x2 + x3 0 0

\right)    .

Here, the Bi are linearly independent.

To apply Proposition 2.5 to a Gaussian statistical model\scrM in the cone of positive-definite
real symmetric m\times m matrices, take the Zariski closure X of\scrM in Sym2(\BbbC m) and let \scrA be
its affine span. The restriction F := det | \scrA of the determinant to \scrA satisfies

MLDF (X) =MLD\mathrm{d}\mathrm{e}\mathrm{t}(X),

which is the usual Gaussian ML degree of\scrM . The log-likelihood \ell S for a covariance matrix
S becomes the function \ell \mathrm{d}\mathrm{e}\mathrm{t},\bfitu from Definition 2.1 with \bfitu = tr(S - ).

Example 2.7. Let \scrM \subseteq Sym2(\BbbR 3) be the set of diagonal positive definite real symmetric
3\times 3 matrices and let X \sim = \BbbC 3 be its complex Zariski closure. The determinant restricts to
the linear space \scrA =X to give the cubic F (x1, x2, x3) = x1x2x3. Then

MLD\mathrm{d}\mathrm{e}\mathrm{t}(X) =MLDx1x2x3
(\BbbC 3) = 1,

where we verify the latter equality as follows. For a generic linear form \bfitu = u1x1+u2x2+u3x3,
the log-likelihood \ell F,\bfitu (x) = log(x1x2x3) - \bfitu (x) has a unique critical point, namely the unique
solution (x1, x2, x3) = (1/u1,

1/u2,
1/u3)\in \BbbC 3 to the equation

\nabla \ell F,\bfitu (x) =

\left(  1/x1  - u1
1/x2  - u2
1/x3  - u3

\right)  = 0.
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Remark 2.8. Let \scrL be a finite-dimensional real vector space, X \subseteq \scrL a variety, and F a
polynomial on \scrL . Then there still exists an affine-linear embedding \scrA : \scrL \rightarrow Sym2(\BbbR m) such
that F becomes the restriction of the determinant. However, it is not always possible to find
an embedding \scrA that intersects the positive definite cone. Thus \scrA need not yield a statistical
model. When such an \scrA exists, the polynomial F is said to possess a definite symmetric
determinantal representation. The problem of computing a definite symmetric determinantal
representation of a real polynomial is well studied in convex algebraic geometry due to its
connections to semidefinite programming and the generalized Lax conjecture [4, 8, 11].

From now on, we consider projective varieties X, reflecting the assumption that our statis-
tical models are scaling-invariant. In this case, the affine span of the affine cone CX over X is
a linear space, and restricting the determinant to that linear subspace yields a homogeneous
polynomial. We thus assume that F is homogeneous and set

MLDF (X) :=MLDF (CX).

We now make a connection between the coordinate-free ML degree of a variety X with
respect to a certain polynomial F and the Euclidean distance degree EDD(X), which counts
the critical points of the Euclidean distance function to X from a general point [16]. This
builds on the perspective in [31, Corollary 3.3] and [12, Theorem 1.1].

Proposition 2.9. Let Q=
\sum n

i=0 x
2
i be the Fermat quadric on \BbbP n and X \subseteq \BbbP n be a projective

variety. Then the Euclidean distance degree of X and the ML degree of X with respect to Q
coincide; i.e.,

EDD(X) =MLDQ(X).

Proof. We identify \BbbC n+1 and (\BbbC n+1)\ast via Q and thus regard x and \bfitu as points of \BbbC n+1.
We find a bijection between the critical points of \ell Q,\bfitu and the critical points of the Euclidean
distance function d2\bfitu (x) :=Q(x - \bfitu ), that is, between the sets

\scrC (d2\bfitu ) := \{ x\in CX | x - \bfitu \bot TxCX\} and \scrC (\ell \bfitu ) :=
\biggl\{ 
x\in CX | 

2x

Q(x)
 - \bfitu \bot TxCX

\biggr\} 
.

Here, TxCX refers to the embedded tangent space, so that x is an element of TxCX . Applying
\langle  - , x\rangle to the definition of \scrC (d2\bfitu ), we see that Q(x) - \langle \bfitu , x\rangle = 0 for x\in \scrC (d2\bfitu ). Doing the same
for \scrC (\ell \bfitu ), we deduce 2  - \langle \bfitu , x\rangle = 0 for x \in \scrC (\ell \bfitu ). The required bijection is given in both
directions by the rational involution \mu :\BbbC n+1  \dashrightarrow \BbbC n+1 defined by \mu (x)=\nabla logQ=2x/Q(x).

The goal of this paper is to characterize irreducible projective varieties with ML degree
one. Let X \subseteq \BbbP (\scrL ) be a projective variety and F a homogeneous polynomial on \scrL . We denote
by CX the affine cone over X. If MLDF (X) = 1, there is a map

MLEX,\scrL ,F :\scrL \ast   \dashrightarrow C\mathrm{s}\mathrm{m}
X \setminus V (F )(2.3)

that takes a general \bfitu \in \scrL \ast to the unique critical point of \ell F,\bfitu along CX . If X is the Zariski
closure of a statistical model in \scrL = Sym2(\BbbC m) and F = det, the map MLEX,\scrL ,F is the
maximum likelihood estimator (MLE).
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Proposition 2.10. Let X \subseteq \BbbP (\scrL ) be a projective variety and F a homogeneous polynomial on
\scrL such that MLDF (X) = 1. Then the map MLEX,\scrL ,F is rational and dominant. Furthermore,
if X \subseteq \BbbP (\scrW ) for some subspace \scrW \subseteq \scrL and \pi :\scrL \ast \rightarrow \scrW \ast is the restriction to \scrW , then

MLEX,\scrL ,F =MLEX,\scrW ,F | \scrW \circ \pi .

Proof. Consider the incidence variety X \subseteq (C\mathrm{s}\mathrm{m}
X \setminus V (F )) \times \scrL \ast of all pairs (p,\bfitu ) such

that p is a critical point of \ell F,\bfitu . Let \pi i be the projections from X onto its ith factor. By
assumption, \pi 2 is birational. For a general p \in C\mathrm{s}\mathrm{m}

X \setminus V (F ) and \bfitu := \nabla p logF , we have
\nabla p\ell F,\bfitu =\nabla p logF - \bfitu = 0. Thus, p is a critical point of \ell F,\bfitu , which shows that \pi 1 is dominant.
Hence, the map MLEX,\scrL ,F = \pi 1 \circ \pi  - 1

2 is rational and dominant. The second statement holds
since \ell F,\bfitu = \ell F | \scrW ,\bfitu | \scrW on C\mathrm{s}\mathrm{m}

X \setminus V (F ).

Remark 2.11. As seen in the proof of Proposition 2.10, the map p \mapsto \rightarrow \nabla p logF sends points
in C\mathrm{s}\mathrm{m}

X \setminus V (F ) to linear forms \bfitu such that (p,\bfitu ) is a critical pair. This is analogous to the
fact that a statistical model can be viewed as a set of empirical probability distributions such
that every model point is its own maximum likelihood estimate.

A projective variety of ML degree one has rational MLE, by Proposition 2.10. We show
the converse.

Proposition 2.12. Let X \subseteq \BbbP (\scrL ) be a projective variety and

\Psi :\scrL \ast   \dashrightarrow C\mathrm{s}\mathrm{m}
X \setminus V (F )

be a dominant rational map such that, for general \bfitu \in \scrL \ast , the point \Psi (\bfitu ) is a critical point
of \ell F,\bfitu along CX . Then MLDF (X) = 1 and \Psi =MLEX,\scrL ,F .

Proof. Let X be the incidence variety from the proof of Proposition 2.10. Suppose (p,\bfitu )
and (p,\bfitv ) lie in X for some \bfitu ,\bfitv \in \scrL \ast . Then the linear forms \bfitu and \bfitv are the same when
restricted to TpCX . Thus \pi 1 : X \rightarrow C\mathrm{s}\mathrm{m}

X \setminus V (F ) makes X into a vector bundle whose fiber
at a base point p is isomorphic to the co-normal space N\ast 

pCX . Hence dim(X) = dim(\scrL \ast ).
The variety X is irreducible since \Psi is dominant; hence so is X. Define \sigma : \scrL \ast   \dashrightarrow X by
\sigma (\bfitu ) = (\Psi (\bfitu ),\bfitu ). Then \sigma is a right-inverse of \pi 2 : X \rightarrow \scrL \ast , thus an injective rational map
between irreducible varieties of the same dimension, and thus birational with inverse \pi 2. The
map \pi 2 has degree one; thus MLDF (X) = 1 and \Psi = \pi 1 \circ \pi  - 1

2 =MLEX,\scrL ,F .

3. The homaloidal PDE. In this section, we state and prove our main results. We char-
acterize the map MLEX,\scrL ,F as the solution to a PDE in Theorem 3.1. We then introduce the
homaloidal PDE and show that its solutions are precisely projective varieties of Gaussian ML
degree one in Theorem 3.5. Our justification for the adjective homaloidal is explained after
Corollary 4.3.

Theorem 3.1. Let X \subseteq \BbbP (\scrL ) be an irreducible projective variety and F a homogeneous
polynomial on \scrL . Then MLDF (X) = 1 if and only if there exists a dominant rational map
\Psi :\scrL \ast   \dashrightarrow CX that satisfies

(a) \Psi (t\bfitu ) = t - 1\Psi (\bfitu ) for all t\in \BbbC \setminus \{ 0\} ,
(b) \nabla \bfitu log(F \circ \Psi )= - \Psi (\bfitu ) for general \bfitu \in \scrL \ast .

In this case, \Psi is the function MLEX,\scrL ,F .
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Before the proof, recall that Euler's homogeneous function theorem says that a homoge-
neous function f on \BbbC n of degree d satisfies

\sum n
i=1

\partial f(x)
\partial xi
\cdot xi = d\cdot f(x) for all x\in \BbbC n. Translated to

a coordinate-free formulation for a vector space and its dual, the result says that if \varphi :\scrL   \dashrightarrow \BbbC 
is a homogeneous rational function of degree d with p\in \scrL , then

(\nabla p\varphi )(p) = d \cdot \varphi (p).

Similarly, given \psi :\scrL \ast   \dashrightarrow \BbbC and \bfitu \in \scrL \ast , the result says that \bfitu (\nabla \bfitu \psi ) = d \cdot \psi (\bfitu ).
Proof of Theorem 3.1. Let d := deg(F ). We first show that if MLDF (X) = 1, then the map

\Psi :=MLEX,\scrL ,F satisfies (a) and (b). This map is rational and dominant, by Proposition 2.10.
For (a), let t\in \BbbC \setminus \{ 0\} , and p :=\Psi (\bfitu ). Then

\nabla t - 1p\ell F,t\bfitu =
\nabla t - 1pF

F (t - 1p)
 - t\bfitu =

(t - 1)d - 1\nabla pF

(t - 1)dF (p)
 - t\bfitu = t\nabla p\ell F,\bfitu .

Since CX is a cone, TpCX and Tt - 1pCX are equal as linear subspaces of \scrL . Thus

Tt - 1pCX = TpCX \subseteq ker(\nabla p\ell F,\bfitu ) = ker(\nabla t - 1p\ell F,t\bfitu ).

Since MLDF (X) = 1, we must have t - 1p=\Psi (t\bfitu ). Thus, \Psi is homogeneous of degree  - 1. For
(b), we have

\nabla \bfitu log(F \circ \Psi )= (\nabla \Psi (\bfitu ) logF ) \circ J\bfitu \Psi =\bfitu \circ J\bfitu \Psi 

because \Psi (\bfitu ) is a critical point of \ell F,\bfitu and Im(Ju\Psi )\subseteq T\Psi (u)CX . Furthermore, since CX is a
cone we have \Psi (\bfitu )\in T\Psi (\bfitu )CX , which yields

0 = (\nabla \Psi (\bfitu )\ell F,\bfitu )(\Psi (\bfitu )) =
(\nabla \Psi (\bfitu )F )(\Psi (\bfitu ))

F (\Psi (\bfitu ))
 - \bfitu (\Psi (\bfitu )) = d - \bfitu (\Psi (\bfitu )),

where the last equality follows from Euler's homogeneous function theorem. Consider the
canonical pairing \beta : \scrL \ast \times \scrL \rightarrow \BbbC . Then \nabla (\bfitu ,p)\beta ( \.\bfitu , \.p) = \.\bfitu (p) + \bfitu ( \.p) for all \bfitu , \.\bfitu \in \scrL \ast and all
p, \.p\in \scrL and so \nabla (\bfitu ,p)\beta = \beta ( - , p)+\beta (\bfitu , - ). Define the function \varphi :=\bfitu (\Psi (\bfitu )) :\scrL \ast \rightarrow \BbbC . Then
\varphi = \beta \circ (id,\Psi ). By the above computation, \varphi is a constant function equal to d. Thus

0 =\nabla \bfitu \varphi = (\nabla (\bfitu ,\Psi (\bfitu ))\beta ) \circ (id, J\bfitu \Psi )

= (\beta ( - ,\Psi (\bfitu )) + \beta (\bfitu , - )) \circ (id, J\bfitu \Psi )=\Psi (\bfitu ) +\bfitu \circ J\bfitu \Psi .

Hence \nabla \bfitu (logF \circ \Psi )=\bfitu \circ J\bfitu \Psi = - \Psi (\bfitu ).
For the converse statement, let \Psi : \scrL \ast   \dashrightarrow CX be a dominant rational map satisfying (a)

and (b), and take a general \bfitu \in \scrL \ast . The map F \circ \Psi is homogeneous of degree  - d. By Euler's
homogeneous function theorem, \bfitu (\nabla \bfitu (F \circ \Psi )) = - d \cdot F (\Psi (\bfitu )). By (b),

\bfitu (\Psi (\bfitu )) =\bfitu ( - \nabla \bfitu (logF \circ \Psi )) = - \bfitu (\nabla \bfitu (F \circ \Psi ))

F (\Psi (\bfitu ))
= d.

Thus 0 = \nabla \bfitu \varphi = \Psi (\bfitu ) + \bfitu \circ J\bfitu \Psi as before, so (\nabla \Psi (\bfitu ) logF  - \bfitu ) \circ J\bfitu \Psi = 0 by (b) again.
Since \Psi is dominant and \bfitu is general, J\bfitu \Psi maps surjectively onto T\Psi (\bfitu )CX . Hence we have
T\Psi (\bfitu )CX \subseteq ker\nabla \Psi (\bfitu )\ell \bfitu ,F , so \Psi (\bfitu ) is a critical point of \ell \bfitu ,F . In other words, \Psi satisfies the
hypotheses of Proposition 2.12. Thus, MLDF (X) = 1 and \Psi =MLEX,\scrL ,F .

The next proposition shows that MLEX,\scrL ,F can be recovered from its projectivization.
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Proposition 3.2. Let X \subseteq \BbbP (\scrL ) be a projective variety and F a homogeneous polynomial on
\scrL such that MLDF (X) = 1. Fix \bfitu \in \scrL \ast and let p \in CX be any representative of the image of
[\bfitu ] under the map \BbbP (MLEX,\scrL ,F ) : \BbbP (\scrL \ast )   \dashrightarrow X. Then

MLEX,\scrL ,F (\bfitu ) =
deg(F )

\bfitu (p)
p.

Proof. Let q :=MLEX,\scrL ,F (\bfitu ). Then \bfitu (q) = degF , as shown in the proof of Theorem 3.1.
Since q= \lambda p for some \lambda \in \BbbC , we have q/\bfitu (q) = p/\bfitu (p); thus

q=
deg(F )

\bfitu (q)
q=

deg(F )

\bfitu (p)
p.

The next definition will be used throughout the rest of the paper.

Definition 3.3. Let \scrL be a finite-dimensional \BbbC -vector space and F a homogeneous polyno-
mial on \scrL . The homaloidal PDE is the nonlinear first-order PDE

\Phi = F \circ ( - \nabla log\Phi ), \Phi :\scrL \ast   \dashrightarrow \BbbC rational and homogeneous.(3.1)

Remark 3.4.
(a) Every solution \Phi to (3.1) is homogeneous of degree  - deg(F ), since \nabla log\Phi is homo-

geneous of degree  - 1.
(b) If \lambda \in \BbbC \setminus \{ 0\} and \Phi is a solution for (\scrL , F ), then \lambda \Phi is a solution for (\scrL , \lambda F ).
We now establish the promised one-to-one correspondence between solutions to the homa-

loidal PDE and projective varieties of ML degree one. We consider two rational functions to
be equal if they agree on a dense open set.

Theorem 3.5. Let \scrL be a finite-dimensional \BbbC -vector space and F a homogeneous polyno-
mial on \scrL . There is a bijection between the projective varieties X \subseteq \BbbP (\scrL ) with MLDF (X) = 1
and the solutions \Phi to the homaloidal PDE. The bijection sends a variety X to the function

\Phi := F \circ MLEX,\scrL ,F ,

and a function \Phi to the variety

X := \BbbP (Im( - \nabla log\Phi )).

A variety X with MLDF (X) = 1 and its corresponding solution \Phi are related by

MLEX,\scrL ,F = - \nabla log\Phi .(3.2)

Proof. If \Phi is a solution of the homaloidal PDE (3.1), then \Psi := - \nabla log\Phi : \scrL \ast   \dashrightarrow CX is
rational and homogeneous of degree  - 1 and satisfies

\nabla log(F \circ \Psi )=\nabla log(F \circ ( - \nabla log\Phi )) =\nabla log\Phi = - \Psi ,

the second equality being the homaloidal PDE. Let X := \BbbP (Im(\Psi )). We have MLDF (X) = 1
and MLEX,\scrL ,F =\Psi , by Theorem 3.1. In particular, (3.2) holds.
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Conversely, let X \subseteq \BbbP (\scrL ) satisfy MLDF (X) = 1 and \Psi :=MLEX,\scrL ,F . By Theorem 3.1(a),
\Psi is homogeneous of degree  - 1. Define \Phi to be the restriction of F \circ \Psi : \scrL \ast   \dashrightarrow \BbbC to the
Zariski-dense open set

\{ \bfitu \in \scrL \ast | \nabla \Psi (\bfitu )F and J\bfitu \Psi have full rank\} .

Then \Phi is a smooth rational homogeneous function. By Theorem 3.1(b),

 - \nabla log\Phi = - \nabla log(F \circ \Psi )=\Psi ;

thus (3.2) holds. Applying F to both sides, we get F ( - \nabla log\Phi ) = F \circ \Psi = \Phi ; hence \Phi is a
solution of (3.1).

To show that the above constructions are mutually inverse, start with (3.2). Apply F to
both sides for one direction and \BbbP (Im( - )) for the other direction.

One upshot of Theorem 3.5 is that the maximum likelihood estimator MLEX,\scrL ,F can be
expressed purely in terms of the scalar-valued function \Phi X,\scrL ,F , the solution to the homaloidal
PDE associated to (X,\scrL , F ). Since the map MLEX,\scrL ,F behaves well when restricting to linear
subspaces, by Proposition 2.10, so does the function \Phi X,\scrL ,F = F \circ MLEX,\scrL ,F . More precisely,
if X \subseteq \BbbP (\scrW ) for some subspace \scrW \subseteq \scrL and \pi :\scrL \ast \rightarrow \scrW \ast is the restriction to \scrW , then

\Phi X,\scrL ,F =\Phi X,\scrW ,F | \scrW \circ \pi .

4. Linear spaces and homaloidal polynomials. This section studies the case X = \BbbP (\scrL ).
We seek the homogeneous polynomials F on \scrL such that MLDF (\BbbP (\scrL )) = 1. This offers a
change of perspective from the usual study of the ML degree: rather than, for fixed F , finding
the linear spaces \scrL of ML degree one, we instead fix \scrL and find the polynomials F with respect
to which \scrL has ML degree one. As it turns out, this class of polynomials is already present
in the literature.

Definition 4.1. Let \scrL be a finite-dimensional \BbbC -vector space. A homogeneous polynomial
F on \scrL is homaloidal if the rational map \nabla logF :\scrL   \dashrightarrow \scrL \ast is birational.

The above definition follows Dolgachev [15, section 2]. For more recent results on homa-
loidal polynomials we refer the reader to [25] and [35]. Our interest in these polynomials
comes from the following fact.

Proposition 4.2. Let F be a homogeneous polynomial on \scrL . Then
(a) MLDF (\BbbP (\scrL )) = deg(\nabla logF );
(b) MLDF (\BbbP (\scrL )) = 1 if and only if F is homaloidal. In this case, MLE\BbbP (\scrL ),\scrL ,F is the

rational inverse of \nabla logF .

Proof. The degree of the rational map \nabla logF is the number of solutions p\in \scrL to

\nabla pF

F (p)
 - \bfitu = 0

for generic \bfitu \in \scrL \ast , which is exactly MLDF (\BbbP (\scrL )). Thus, MLDF (\BbbP (\scrL )) = 1 if and only if
\nabla logF is birational. In this case, its inverse \Psi satisfies

\nabla \Psi (\bfitu )F

F (\Psi (\bfitu ))
 - \bfitu = 0

for general \bfitu \in \scrL \ast ; thus it equals MLE\BbbP (\scrL ),\scrL ,F .
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Part (a) of Proposition 4.2 is used as a definition of the ML degree in [14, Definition
2.3.1]. Part (b) allows us to establish a close connection between homaloidal polynomials and
solutions to the homaloidal PDE.

Corollary 4.3. Let F be homaloidal and \Psi = (\nabla logF ) - 1. Then F \circ \Psi satisfies the homa-
loidal PDE. Conversely, if \Phi is a solution to the homaloidal PDE and if X := \BbbP (Im( - \nabla log\Phi ))
is equal to \BbbP (\scrL ), then F is homaloidal.

Proof. Both statements follow from Proposition 4.2 and Theorem 3.5. For the converse
statement, the birational inverse of \nabla logF is given by  - \nabla log\Phi .

Our motivation for calling (3.1) the homaloidal PDE comes from the fact that if \Phi is
a solution to (3.1) for an arbitrary subvariety X \subseteq \BbbP (\scrL ), then \Psi :=  - \nabla log\Phi satisfies \Psi \circ 
(\nabla logF ) = id on CX , giving a birational inverse of \nabla logF on CX . This extends Definition 4.1
to instances beyond the linear space \scrL .

In light of Proposition 4.2(b), we can restate two results from the literature on homaloidal
polynomials as results on linear models of ML degree one, as follows.

Theorem 4.4 (see [15, Theorem 4]). Let \scrL \sim = \BbbC 3 and let F be a homogeneous polynomial
on \scrL without repeated factors. Then MLDF (\BbbP (\scrL )) = 1 if and only if the projective variety
V (F )\subseteq \BbbP (\scrL ) is one of the following plane curves:

(a) A smooth conic.
(b) The union of three nonconcurrent lines.
(c) The union of a smooth conic and a tangent line.

Theorem 4.5 (see [25, Theorem 4]). Let \scrL \sim =\BbbC m where m\geq 4, and let F be a homogeneous
polynomial on \scrL . Suppose that all singularities of the projective variety V (F ) \subseteq \BbbP (\scrL ) are
isolated. Then MLDF (\BbbP (\scrL )) = 1 if and only if V (F ) is a smooth quadric.

Remark 4.6. When F is the Fermat quadric, Theorems 4.5 and 4.4 together with Propo-
sition 2.9 yield a classification of linear spaces of Euclidean distance degree one. For instance,
a linear subspace of \BbbC m, where m \geq 4, has Euclidean distance degree one if and only if it
intersects the Fermat quadric hypersurface transversally.

We solve the homaloidal PDE when \scrL =\BbbC or \BbbC 2, without using the assumptions on F in
the previous two theorems: we no longer assume that F has no repeated factors; nor do we
assume that all singularities of V (F ) are isolated.

Lemma 4.7. Let (pi)
n
i=1 be a basis of a \BbbC -vector space \scrL and (\ell i)

n
i=1 the associated dual

basis of \scrL \ast . Let F :=
\prod n

i=1 \ell 
ai

i , with ai \geq 0 for all i. Then F is homaloidal if and only if all
ai \geq 1. In this case, the inverse \Psi :\scrL \ast \rightarrow \scrL of \nabla logF is

\Psi (\bfitu ) =

n\sum 
i=1

ai
\bfitu (pi)

pi.

Proof. For p\in \scrL we have

\nabla p logF =

n\sum 
i=1

ai
\ell i(p)

\ell i;
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thus Im(\nabla logF ) \subseteq Span(\ell i)ai \not =0. So, if \nabla logF is birational, then all ai \geq 1. Conversely, if
all ai \geq 1, then the map \Psi of the statement is a birational inverse of \nabla logF . Indeed, by
substituting \bfitu =\nabla p logF in the expression for \Psi we obtain

(\Psi \circ \nabla logF )(p) =

n\sum 
i=1

ai \ell i(p)

ai
pi = p.

Remark 4.8. Bruno [6, Theorem B] showed the more general result that
\prod n

i=1 \ell 
ai

i as in
Lemma 4.7, with ai \geq 1, is homaloidal if and only if the \ell i form a basis of \scrL \ast .

Proposition 4.9. Let F be a nonzero homogeneous polynomial on \scrL .
(a) If \scrL \sim =\BbbC , then MLDF (\BbbP (\scrL )) = 1 if and only if F is not constant. In this case,

MLE\BbbP (\scrL ),\scrL ,F (\bfitu ) =
deg(F )

\bfitu (p)
p for general \bfitu \in \scrL \ast ,

where p is any generator of \scrL .
(b) If \scrL \sim =\BbbC 2, then MLDF (\BbbP (\scrL )) = 1 if and only if F = \lambda \ell a1

1 \ell 
a2

2 for some \lambda \in \BbbC , a1, a2 \geq 1,
and linearly independent \ell 1, \ell 2 \in \scrL \ast . In this case,

MLE\BbbP (\scrL ),\scrL ,F (\bfitu ) =
a1

\bfitu (p1)
p1 +

a2
\bfitu (p2)

p2 for general \bfitu \in \scrL \ast ,

where p1, p2 \in \scrL form a basis dual to (\ell 1, \ell 2).

Proof. Part (a) is a direct consequence of Lemma 4.7. For (b), decompose F as a product
of powers of k distinct linear forms and use Remark 4.8 to conclude that F = \lambda \ell a1

1 \ell 
a2

2 with
\ell 1, \ell 2 linearly independent. The rest follows from Lemma 4.7.

A point p embedded in a larger projective space \BbbP n need not have ML degree one. Consider
a nonconstant polynomial F on \BbbP n. If p /\in V (F ), then F restricted to the affine line spanned
by p is nonzero, and thus the ML degree of p is one by Proposition 4.9(a). Otherwise, if
p\in V (F ), then the ML degree is zero by Definition 2.1.

Remark 4.10. We comment on a possible way to extend Proposition 4.9 beyond the bivari-
ate case. Let DF,\bfitu := V (F ) \cup V (\bfitu ) and let \chi \mathrm{t}\mathrm{o}\mathrm{p} denote the topological Euler characteristic.
By [13, Theorem 1],

MLDF (\BbbP (\scrL )) = ( - 1)\chi \mathrm{t}\mathrm{o}\mathrm{p}(\BbbP (\scrL ) \setminus DF,\bfitu ) for general \bfitu \in \scrL \ast .(4.1)

When \scrL \sim = \BbbC 2, the Euler characteristic on the right-hand side of (4.1) can be computed as
follows. Consider the factorization of F as a product of powers of k distinct linear forms.
Then k = \#V (F ), and, for general \bfitu , the space \BbbP (\scrL ) \setminus DF,\bfitu is obtained by removing k + 1
distinct points from a 2-sphere. It follows that MLDF (\BbbP (\scrL )) = 1 if and only if k = 2, as seen
in Proposition 4.9. For higher-dimensional \scrL , the Euler characteristic becomes more difficult
to compute.

Remark 4.11. Whether F is homaloidal depends only on its radical; thus we may discard
repeated factors of F . Indeed, the right-hand side of (4.1) only depends on the topology of
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V (F ), so we may replace F with radF . In particular, the restriction in Theorem 4.4 that F
has no repeated factors is not necessary.

Returning to the case F =det and \scrL embedded into Sym2(\BbbR m), the upshot of the results
in this section is the following.

Corollary 4.12. A linear space \scrL \subset Sym2(\BbbR m) of dimension k \leq 3 has ML degree one if
and only if the variety \BbbP (V (det)\cap \scrL ) is
(k=1) empty,
(k=2) two distinct points, or
(k=3) a smooth conic, the union of three nonconcurrent lines, or the union of a smooth conic

and a tangent line.

Proof. For k = 1 and k = 2, the statement follows from Proposition 4.9 after restricting
the determinant to \scrL . The case k= 3 is derived similarily using Theorem 4.4.

Corollary 4.12 implies that a linear space represented as the span of one matrix has ML
degree one if and only if that matrix is nonsingular. A two-dimensional linear space has ML
degree one if and only if it can be spanned by two singular matrices that are (up to scaling)
the only singular matrices in the space.

Proposition 4.2 relates Gaussian models of the simplest type, linear models, to homaloidal
polynomials. Such a model has ML degree one if and only if the determinant restricted to
it is a homaloidal polynomial. Varying the dimension of the ambient space Sym2(\BbbC m), this
produces every homogeneous polynomial, by Proposition 2.5. Hence classifying all linear
models of ML degree one independently of the ambient space is equivalent to classifying all
homaloidal polynomials. The latter is a long-standing open problem in birational geometry.
For a discussion on the difficulty of this problem, we refer the reader to [9]. Even if we fix
the ambient space Sym2(\BbbC m), homaloidal polynomials arising as the determinant of a linear
space are ill understood [34].

In Theorems 4.4 and 4.5, we used the literature on homaloidal polynomials to find Gaussian
models of ML degree one. One could continue in this fashion, turning results on homaloidal
polynomials, such as those in [9, 34], into results on varieties of ML degree one. This would
strengthen the bridge between birational geometry and algebraic statistics.

5. Graphical models. In this section, we illustrate our results by applying them to Gauss-
ian graphical models, both directed and undirected. We use the homaloidal PDE (3.1) to find
MLEs, which agree with formulae from [29]. We construct an MLE from products of determi-
nants of positive definite symmetric matrices and compute its image, the corresponding model.
Two determinant equations are relevant here: a product of determinants for a chordal undi-
rected graph, from [29, Lemma 5.5] and its directed analogue, which we derive in Lemma 5.14.
We show that these two determinant equations lead to solutions to the homaloidal PDE. We
first explain how to formulate Theorems 3.1 and 3.5 for \scrL = Sym2(\BbbC m), without passing to
its dual vector space, to simplify our later computations.

5.1. Coordinate formulation of main results. The bilinear trace pairing (A,B) \mapsto \rightarrow tr(AB)
on Sym2(\BbbC m) restricts to an inner product on Sym2(\BbbR m). Using that pairing, we identify
Sym2(\BbbC m) with its dual vector space via Sym2(\BbbC m) \ni A \mapsto \rightarrow tr(A\bullet ). Under this identification,
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the gradient \nabla S\Phi of a scalar-valued function \Phi on Sym2(\BbbC m) is a symmetric matrix with
entries

(\nabla S\Phi )ij =
1

2 - \delta ij
\partial \Phi 

\partial sij
,(5.1)

where \delta ij is the Kronecker delta and the sij are the coordinates on Sym2(\BbbC m). The factors
of 1/2 in the off-zero entries come from the choice of the trace pairing. Jacobi's formula gives
\nabla S log det = S - 1.

Example 5.1. When m= 2 we have

det(S) = det

\biggl[ 
s11 s12
s12 s22

\biggr] 
= s11s22  - s212, \nabla S log det =

1

det(S)

\biggl[ 
s22  - s12
 - s12 s11

\biggr] 
.

The off-diagonal entries in the second equation are 1
2
\partial \mathrm{l}\mathrm{o}\mathrm{g} \mathrm{d}\mathrm{e}\mathrm{t}
\partial s12

= - s12.
Maximum likelihood estimation for graphical models fits the setting described in Defini-

tion 2.1 by specializing to F =det and \bfitu = tr(S\bullet ). We reformulate Theorems 3.1 and 3.5 for
that special case.

Corollary 5.2. Let X be an irreducible projective subvariety of \BbbP (Sym2(\BbbC m)). We have
MLD\mathrm{d}\mathrm{e}\mathrm{t}(X) = 1 if and only if there exists a dominant rational map \Psi : Sym2(\BbbC m)   \dashrightarrow CX

such that
(a) \Psi (tS) = t - 1\Psi (S) for all t\in \BbbC \setminus \{ 0\} ,
(b) \nabla S(log det\Psi ) = - \Psi (S) for general S \in Sym2(\BbbC m).

The map \Psi is the MLE.

Corollary 5.3. There is a bijection between the projective varieties X \subseteq \BbbP (Sym2(\BbbC m)) with
MLD\mathrm{d}\mathrm{e}\mathrm{t}(X) = 1 and the solutions \Phi to

\Phi =det( - \nabla S log\Phi ), \Phi : Sym2(\BbbC m)   \dashrightarrow \BbbC rational and homogeneous.(5.2)

The bijection sends a function \Phi to the variety \BbbP (Im( - \nabla S log\Phi )).

The functions \Phi and \Psi from Corollaries 5.2 and 5.3 relate via \Phi = det\Psi .

Example 5.4. Let the model be the full positive definite cone. Its Zariski closure is, as
a projective variety, \BbbP (Sym2(\BbbC m)). Recall from (1.1) that the log-likelihood \ell S(K) is, up to
additive and multiplicative constants, equal to logdet(K) - tr(KS). Then

\nabla K log detK =K - 1 and \nabla Ktr(KS) = S,

where the first equation comes from the Jacobi formula; see Example 5.1. Hence the relation
\nabla \ell S(K) = 0 is equivalent toK - 1 - S = 0, leading to the solution \^K := S - 1. Thus, if the sample
covariance matrix S has full rank, then S - 1 is the global maximum and unique critical point of
the log-likelihood. Hence the MLE is \Psi (S) = S - 1, and, moreover, we have \Phi (S) = det(S) - 1.

We check that \Psi satisfies the conditions of Corollary 5.2, as follows. The map \Psi (S) = S - 1

is a dominant rational map and \Psi (tS) = (tS) - 1 = t - 1S - 1 = t - 1\Psi (S). In addition,

\nabla S(log det\Psi ) =\nabla S log det(S
 - 1) = - \nabla S log detS = - S - 1 = - \Psi (S).(5.3)

Next we show that \Phi = det\Psi satisfies the conditions of Corollary 5.3, as follows. Taking
determinants on both sides of (5.3) and setting \Phi = det\Psi gives det( - \nabla S(log\Phi )) =\Phi .
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5.2. Undirected graphical models.
Definition 5.5. Fix an undirected graph G = (V,E). The undirected Gaussian graphical

model\scrM (G) consists of (positive definite) concentration matrices K with Kij = 0 if (i, j) /\in E.
Its Zariski closure is the linear space \scrL G \subseteq Sym2(\BbbC V ). Here \BbbC V denotes the function space
that is isomorphic to the vector space over \BbbC of finite dimension | V | .

Example 5.6. Let G be the complete graph on m nodes. The associated graphical model
is the full cone of symmetric positive definite matrices. Its Zariski closure is \scrL G =Sym2(\BbbC m).
Hence this is Example 5.4.

A fundamental class of undirected graphical models is given by chordal graphs, also known
as triangulated or decomposable graphs.

Definition 5.7. Let G = (V,E) be an undirected graph. A weak decomposition of G is a
triple A,B,C \subseteq V such that the following hold:

1. A,B, and C are pairwise disjoint with union V .
2. C separates A from B; that is, every path from a vertex in A to a vertex in B passes

through the set C; see [38, Chapter 13].
3. C induces a complete graph.

We denote such a decomposition by G=A\amalg CB, after identifying a vertex set with its induced
subgraph. The notion of a chordal graph can be defined recursively by saying that complete
graphs are chordal and that a graph G is chordal if it has a weak decomposition G=A\amalg C B,
where A and B are chordal.

An alternative definition of a graph being chordal is that it has no n-cycle for n\geq 4 as an
induced subgraph. See [29, sect. 2.1] for the equivalence of these definitions.

Chordal graphs have ML degree one [37]. We give an alternative proof of this result
using the homaloidal PDE. Given a matrix S \in Sym2(\BbbC V ), we denote by SA \in Sym2(\BbbC A) its
submatrix indexed by A\subseteq V . Dually, given a matrix M \in Sym2(\BbbC A), we pad it with zeros at
positions in V \setminus A to obtain a (| V | \times | V | )-matrix denoted by [M ]V . Define [S - 1

A ]V := [(SA)
 - 1]V ;

i.e., it is the matrix SA, inverted, and then padded with zeros.
The following lemma finds the determinant formula we use for finding solutions to the

homaloidal PDE for chordal graphical models.

Lemma 5.8. Let A\cup B\cup C be a partition of \{ 1, . . . ,m\} . Let S be an m\times m general positive
definite symmetric matrix. Let \^K := [S - 1

A\cup C ]
V + [S - 1

B\cup C ]
V  - [S - 1

C ]V . Then

det \^K =
det(SC)

det(SA\cup C)det(SB\cup C)
.

Proof. Let f be the probability density associated to \^K - 1 and g the density associated to
S. Denote by gA\cup C the marginal density associated to A \cup C, and likewise define gB\cup C and
gC . We compute

f(y) = (2\pi ) - m/2(det \^K)1/2
exp( - 1

2y
TS - 1

A\cup Cy) exp( - 
1
2y

TS - 1
B\cup Cy)

exp( - 1
2y

TS - 1
C y)

=
(det \^K)1/2(detS - 1

C )1/2

(detS - 1
A\cup C)

1/2(detS - 1
B\cup C)

1/2

gA\cup C(y)gB\cup C(y)

gC(y)
.
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It remains to show that gA\cup CgB\cup C/gC is a probability distribution. We integrate over y \in \BbbR n

to obtain\int 
C

\int 
B

\int 
A

gA\cup C(y)gB\cup C(y)

gC(y)
=

\int 
C

1

gC(y)

\biggl( \int 
A
gA\cup C(y)

\biggr) \biggl( \int 
B
gB\cup C(y)

\biggr) 
=

\int 
C

gC(y)
2

gC(y)
= 1.

We proved Lemma 5.8 in the real positive definite setting; a proof in the complex setting is
outlined in [29, Lemma 5.5]. We now describe the solution to the homaloidal PDE for chordal
graphical models and the associated MLE map. In particular, we show that such models have
ML degree one.

Proposition 5.9. Let G= (V,E) be a chordal graph. Define the function \Phi G recursively by

\Phi G(S) =

\Biggl\{ 
det(S - 1), G complete,
\Phi A\cup C(SA\cup C)\Phi B\cup C(SB\cup C)

\Phi C(SC) , G=A\amalg C B.

Then \Phi G satisfies the homaloidal PDE. The associated MLE \Psi G := - \nabla S log\Phi G(S) satisfies

\Psi G(S) =

\Biggl\{ 
S - 1, G complete,

[\Psi A\cup C(SA\cup C)]
V + [\Psi B\cup C(SB\cup C)]

V  - [\Psi C(SC)]
V , G=A\amalg C B.

The function \Psi G maps surjectively to\scrM (G).

Proof. The recursion in the statement terminates if and only if G is chordal. If G is
complete, the statement holds by Example 5.4. We induct on the structure of G. If G is
chordal but not necessarily complete, let G = A \amalg C B be a nontrivial weak decomposition.
Graphs A, B, and C are chordal; thus by the induction hypothesis \Phi C , \Phi A\cup C , and \Phi B\cup C
satisfy the homaloidal PDE and the corresponding MLEs \Psi C , \Psi A\cup C , and \Psi B\cup C exist and
map surjectively onto\scrM (C),\scrM (A\cup C), and\scrM (B\cup C), respectively. Using the definition of
\Phi G, we compute

\Psi G = - \nabla S log\Phi G(S)

= - \nabla S log\Phi A\cup C(S) - \nabla S log\Phi B\cup C(S) +\nabla S log\Phi C(S)

= [\Psi A\cup C(SA\cup C)]
V + [\Psi B\cup C(SB\cup C)]

V  - [\Psi C(SC)]
V .

Furthermore, by Lemma 5.8,

det\Psi G =
(det\Psi  - 1

C )

(det\Psi  - 1
A\cup C)(det\Psi 

 - 1
B\cup C)

=
\Phi A\cup C\Phi B\cup C

\Phi C
=\Phi G.

Thus \Phi G satisfies the homaloidal PDE. Finally, let K \in \scrM (G). Then the submatrices KA\cup C ,
KB\cup C , and KC are elements of\scrM (A\cup C),\scrM (B\cup C), and\scrM (C), respectively. Since Kij = 0
whenever i \in A and j \in B, we have K = [KA\cup C ]

V + [KB\cup C ]
V  - [KC ]

V . Using the induction
hypothesis, we see that K is in the image of \Psi G. Hence, \Psi G maps surjectively onto\scrM (G).
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The previous proposition illustrates how one could start with determinant equations \Phi ,
verify the homaloidal PDE, and then compute the log-derivative to get an MLE map, whose
image is the corresponding model. We explore some examples.

Example 5.10. Let G be the graph

1 2 3.

The graphical model\scrM (G) consists of all concentration matrices

K =

\left[  k11 k12 0
k12 k22 k23
0 k23 k33

\right]  .
Following the recursion, we find that the solution to the homaloidal PDE for\scrM (G) is

\Phi (S) =
det(S2)

det(S12)det(S23)
.

We can compute the MLE by taking partial derivatives of \Phi . For example, the (2,2) entry of
the MLE is

MLE(S)22 = - 
\partial log\Phi 

\partial s22
=

(s11s
2
22s33  - s212s223)

(s22)(s22s33  - s223)(s11s22  - s212)
.

Example 5.11. Consider the graphical model defined by the graph

3

1 2 4 5.

Following the recursion, the solution to the homaloidal PDE for this graphical model is

\Phi (S) =
det(S2)det(S4)

det(S12)det(S234)det(S45)
.

Again, partial derivatives of \Phi give the MLE. For instance,

MLE(S)23 = - 
1

2

\partial log\Phi 

\partial s23
=

1

2

\partial log det(S234)

\partial s23
=
s24s34  - s23s44

det(S234)
.

Example 5.12 (the four cycle). Let G be the nonchordal graph

1 2

3 4.

The naive analogue for the determinant formula for this graph has separators in the numerator
and cliques in the denominator:

\Phi (S) =
det(S1)det(S2)det(S3)det(S4)

det(S12)det(S23)det(S34)det(S14)
.
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This formula does not satisfy the homaloidal PDE. To verify this, we enter this expression
into the computer algebra system Macaulay2 [23], compute det( - \nabla log\Phi ) symbolically, and
find that it is not equal to \Phi . See https://mathrepo.mis.mpg.de/GaussianMLDeg1 for code
to verify this and the other examples in this section.

5.3. Directed graphical models.
Definition 5.13. Fix a directed acyclic graph (DAG) G = (V,E). A directed Gaussian

graphical model on G consists of concentration matrices K = (I  - A)\top \Omega (I  - A), where \Omega is
diagonal positive definite and Aij = 0 unless j\rightarrow i is in E.

We prove that directed Gaussian graphical models have ML degree one by providing a
solution to the homaloidal PDE in Proposition 5.15. We begin with the determinant formula
that is analogous to Lemma 5.8. The formula makes use of the parents of a node v \in V ; i.e.,
pa(v) := \{ i | i\rightarrow v inE\} .

Lemma 5.14. Let G= (V,E) be a DAG and S a general positive definite symmetric matrix
of size | V | \times | V | . Define

\^K :=
\sum 
v\in V

K[v| \mathrm{p}\mathrm{a}(v)], where K[v| \mathrm{p}\mathrm{a}(v)] := [S - 1
v\cup \mathrm{p}\mathrm{a}(v)]

V  - [S - 1
\mathrm{p}\mathrm{a}(v)]

V .(5.4)

Then

det \^K =
\prod 
v\in V

detS\mathrm{p}\mathrm{a}(v)

detSv\cup \mathrm{p}\mathrm{a}(v)
.

Proof. The density function associated to \^K - 1 is

f(y) = (2\pi ) - m/2(det \^K)1/2 exp

\biggl( 
 - 1

2
yT \^Ky

\biggr) 
= (2\pi ) - m/2(det \^K)1/2

\prod 
v\in V

exp

\biggl( 
 - 1

2
yTK[v| \mathrm{p}\mathrm{a}(v)]y

\biggr) 
.

We obtain a second description of f(y). We have

f(yv| y\mathrm{p}\mathrm{a}(v)) =
f(yv\cup \mathrm{p}\mathrm{a}(v))

f(y\mathrm{p}\mathrm{a}(v))
= (2\pi ) - 1/2 det(S\mathrm{p}\mathrm{a}(v))

1/2

det(Sv\cup \mathrm{p}\mathrm{a}(v))1/2
exp

\biggl( 
 - 1

2
yTK[v| \mathrm{p}\mathrm{a}(v)]y

\biggr) 
.

Thus,

f(y) = (det \^K)1/2

\Biggl( \prod 
v\in V

detSv\cup \mathrm{p}\mathrm{a}(v)

detS\mathrm{p}\mathrm{a}(v)

\Biggr) 1/2\Biggl( \prod 
v\in V

f(yv| y\mathrm{p}\mathrm{a}(v))

\Biggr) 
.

According to the factorization property of G, the rightmost factor of the above expression is
a probability distribution. Integrating over y, we obtain the desired result.

While we prove Lemma 5.14 in the real positive definite setting, a proof can also be found
in the general complex setting, by following the structural equations of the graph G with
complex variables.
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Proposition 5.15. Let G= (V,E) be a DAG and\scrM its associated Gaussian graphical model.
The function

\Phi (S) :=
\prod 
v\in V

det(S\mathrm{p}\mathrm{a}(v))

det(Sv\cup \mathrm{p}\mathrm{a}(v))
(5.5)

satisfies the homaloidal PDE. The corresponding MLE \Psi sends S to \^K and maps surjectively
to\scrM . In particular, every DAG model has ML degree one.

Proof. We have

 - \nabla S log\Phi =
\sum 
v\in V

(\nabla S log det(Sv\cup \mathrm{p}\mathrm{a}(v)) - \nabla S log det(S[\mathrm{p}\mathrm{a}(v)]))

=
\sum 
v\in V

([S - 1
v\cup \mathrm{p}\mathrm{a}(v)]

V  - [S - 1
\mathrm{p}\mathrm{a}(v)]

V ) = \^K

and det( - \nabla log\Phi ) = \Phi , by Lemma 5.14. In the proof of the lemma, we also see that \^K \in \scrM 
since the distribution associated to \^K factorizes according to G.

Example 5.16. Fix the DAG 1\rightarrow 3\leftarrow 2. Consider the directed Gaussian graphical model
on G. The model consists of concentration matrices K that satisfy

k13k23  - k12k33 = 0.

Let S be the sample covariance matrix. The MLE given S is

\Psi (S) =
1

det(S)

\left[   
s211s

2
22s33+\cdot \cdot \cdot  - 2s11s212s22s33
s11(s11s22 - s212)

(s12s13 - s11s23)(s12s23 - s13s22)
s11s22 - s212

s12s23  - s13s22
(s12s13 - s11s23)(s12s23 - s13s22)

s11s22 - s212

s211s
2
22s33+\cdot \cdot \cdot  - 2s11s212s22s33
s22(s11s22 - s212)

s12s13  - s11s23
s12s23  - s13s22 s12s13  - s11s23 s11s22  - s212

\right]   ,
provided that \Delta := s11s22(s11s22  - s212)det(S) does not vanish. Here

\Phi = det\Psi =
s11s22  - s212
s11s22 det(S)

.

The formula for the scalar-valued function \Phi is simpler than the one for the MLE \Psi .

Example 5.17. Let G be the graph

1 3

2 4 5.

The solution to the homaloidal PDE for G is

\Phi (S) =
det(S1)det(S23)det(S34)

det(S12)det(S13)det(S234)det(S345)
.
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Computing partial derivatives of \Phi gives the MLE, \^K. For example,

MLE(S)23 = - 
1

2

\partial log\Phi 

\partial s23
=

1

2

\partial log \mathrm{d}\mathrm{e}\mathrm{t}(S234)/\mathrm{d}\mathrm{e}\mathrm{t}(S23)

\partial s23
= - (s33s24  - s23s34)(s23s24  - s22s34)

det(S234)det(S23)
.

The expression for \Phi may not seem simpler than the one for \^K in (5.4), which, for this
example, is

\^K = ([S - 1
12 ]

V + [S - 1
13 ]

V + [S - 1
234]

V + [S - 1
345]

V ) - ([S - 1
1 ]V + [S - 1

23 ]
V + [S - 1

34 ]
V ).

However, the former expression has smaller complexity (and is faster to compute) than the
latter. If av is the size of the matrix S\mathrm{p}\mathrm{a}(v), then the complexity of the expression \Phi in terms

of S is O(a21 + \cdot \cdot \cdot + a2m), whereas the complexity of \^K is O(a31 + \cdot \cdot \cdot + a3m).

Example 5.18. Let G be the directed nonacyclic graph

1 2

3 4.

Applying the formula (5.5) for \Phi to this example gives an equation that does not satisfy the
homaloidal PDE: it is the same as Example 5.12.

6. Solutions to the homaloidal PDE. We saw instances where linear ML degree one
varieties can be characterized, via connections to homaloidal polynomials, in section 4. In this
section, we present steps towards parametrizing the solutions to the homaloidal PDE when
X is not necessarily linear. We study factorization properties of solutions to the homaloidal
PDE in Proposition 6.1, inspired by the proof of [26, Lemma 16]. We solve the PDE when
the polynomial F is linear in Theorem 6.2.

Proposition 6.1. Fix a basis u1, . . . , u\mathrm{d}\mathrm{i}\mathrm{m}\scrL for \scrL \ast . Let \Psi be the MLE map of some va-
riety with ML degree one. Consider prime decompositions of the coordinates of \Psi , say
\psi i = ci

\prod 
f\in \scrF f

\alpha i,f , where ci \in \BbbC and \scrF is the set of all prime factors that appear in some
coordinate. The prime decompositions satisfy the following:

(a) The factors in the denominators are linear; i.e., \alpha i,f \geq  - 1 for all f \in \scrF and all
i\in \{ 1, . . . ,dim\scrL \} .

(b) If f appears in some denominator, then \partial f
\partial uj
\not = 0 if and only if \alpha j,f =  - 1. That is, f

only depends on the uj for which f is a factor of the denominator of \psi j.

Proof. There is a rational function \Phi such that \Psi =  - \nabla log\Phi , by Theorem 3.5. We
decompose \Phi =

\prod N
k=1 g

\beta k

k into prime factors for some integer N . Fixing a basis, define \scrG i :=
\{ k : \partial gk

\partial ui
\not = 0\} , the set of indices k such that gk depends on ui. Then

\psi i = - 
\partial log\Phi 

\partial ui
= - 

\sum 
k\in \scrG i

\beta k
gk

\partial gk
\partial ui

= - 
\sum 

k\in \scrG i
(
\prod 

j\in \scrG i\setminus \{ k\} gj)\beta k
\partial gk
\partial ui\prod 

k\in \scrG i
gk

.

Then (a) follows, because no exponent in the denominator of any \psi i can be greater than one
after simplifying the expression above. We next show that there are no common prime factors
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of the numerator and denominator of the derived expression for \psi i. For each index l \in \scrG i we
may write

\sum 
k\in \scrG i

\left(  \prod 
j\in \scrG i\setminus \{ k\} 

gj

\right)  \beta k
\partial gk
\partial ui

=

\left(  \prod 
j\in \scrG i\setminus \{ l\} 

gj

\right)  bl
\partial gl
\partial ui

+ gl \cdot 

\left(  \sum 
k\in \scrG i\setminus \{ l\} 

\left(  \prod 
j\in \scrG i\setminus \{ k,l\} 

gj

\right)  \beta k
\partial gk
\partial ui

\right)  .

From this we deduce that

gl

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 
k\in \scrG i

\left(  \prod 
j\in \scrG i\setminus \{ k\} 

gj

\right)  \beta k
\partial gk
\partial ui

if and only if gl

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\left(  \prod 

j\in \scrG i\setminus \{ l\} 

gj

\right)  bl
\partial gl
\partial ui

.

However, gl \nmid (
\prod 

j\in \scrG i\setminus \{ l\} gj)bl
\partial gl
\partial ui

because all gk are distinct primes and a polynomial cannot
be a factor of its own derivative. Thus the expression for \psi i has no common prime factor in
the numerator and denominator. From this we conclude that \scrG i \subset \scrF and that these factors
gk are the only ones that occur in the denominator of \psi i. Moreover, gk will appear exactly in
the denominators of \psi i with k \in \scrG i.

We can observe the described properties of the map \Psi in all examples of ML degree one
varieties presented throughout this paper. We conclude this section by solving the PDE when
the polynomial F is linear. If Y \subseteq \BbbP n is a hypersurface and p \in Y a singular point with
multiplicity deg(Y ) - 1, we define a retraction rp : \BbbP n   \dashrightarrow Y that sends a point q to the unique
point in Y on the line through p and q. The map rp is rational.

Theorem 6.2. Let \scrL be a finite-dimensional \BbbC -vector space and \ell \in \scrL \ast . Let \Phi = f/g be a
rational function on \scrL \ast , homogeneous of degree  - 1. Then \Phi satisfies the homaloidal PDE
with respect to \ell if and only if \ell is a point of V (g) of multiplicity deg g - 1 and f = \ell (\nabla \bfitu g).

In this case, the map \Psi := - \nabla log\Phi satisfies [\Psi (\bfitu )] = [\nabla r\ell (\bfitu )g] for general \bfitu \in \scrL \ast , where
r\ell is the retraction to V (g). The variety of ML degree one, parametrized by \Psi , is the dual
variety \BbbP (V (g))\vee := \BbbP (Im(\nabla g| V (g)).

Proof. The function \Phi satisfies the homaloidal PDE if and only if

1 =
\ell ( - \nabla log\Phi )

\Phi (\bfitu )
= - \ell (\nabla \bfitu \Phi )

\Phi (\bfitu )2
=

\biggl[ 
d

dt

1

\Phi (\bfitu + t\ell )

\biggr] 
t=0

.(6.1)

Pick a basis (\ell 1, . . . , \ell n) of \scrL \ast such that \ell = \ell 1. In this basis, elements of \scrL \ast are written as
\bfitu =

\sum n
i=1 ui\ell i and (6.1) is equivalent to

d

du1

1

\Phi (\bfitu )
= 1.

This equation is satisfied if and only if

1

\Phi (u)
= u1 +

h2
h1

=
u1h1 + h2

h1
,

where h1, h2 \in \BbbC [u2, . . . , un] and degh2 =degh1 + 1. The latter is equivalent to

f \in \BbbC [u2, . . . , un] and g= u1f + h for some h\in \BbbC [u2, . . . , un]\mathrm{d}\mathrm{e}\mathrm{g} f+1.(6.2)
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Since \ell is the origin in the affine chart u1 = 1, (6.2) holds if and only if \ell is a point of V (g) of
multiplicity deg g - 1 with f = \ell (\nabla \bfitu g).

Let \Phi as above satisfy the homaloidal PDE. Use the same basis as above, so that \ell = \ell 1
and g= u1f + h where f, g \in \BbbC [u2, . . . , un]. Then

[\Psi ] = [\nabla \Phi ] = [\nabla log f  - \nabla log(u1f + h)]

=

\biggl[ 
h\nabla f  - f2\nabla u1  - f\nabla h

f(u1f + h)

\biggr] 
= [h\nabla f  - f2\nabla u1  - f\nabla h].

The right-hand side does not depend on u1. Hence the function [\Psi ] is constant along the line
through \bfitu and \ell . Moreover,

[\Psi ] =

\biggl[ 
g\nabla f  - f\nabla g

g2

\biggr] 
= [g\nabla f  - f\nabla g];

thus [\Psi ] is equivalent to a rational function that is defined on V (g). For general \bfitu \in \scrL \ast we
have g(r\ell (\bfitu )) = 0 and f(r\ell (\bfitu )) \not = 0; thus

[(g\nabla f  - f\nabla g)(r\ell (\bfitu ))] = [f(r\ell (\bfitu ))\nabla r\ell (\bfitu )g] = [\nabla r\ell (\bfitu )g].

Since r\ell (\bfitu ) is on the line through \bfitu and \ell , we conclude that [\Phi (\bfitu )] = [\nabla r\ell (\bfitu )g].

7. Examples of ML degree one varieties. We conclude the paper with examples of ML
degree one varieties; see Table 1 for an overview. In some of these examples, we take the ML
degree with respect to polynomials F other than the determinant, but each can be turned
into an example of a variety of ML degree one in the sense of [37] by applying Proposition 2.5.
The first two rows of the table are graphical model examples from section 5. We give one
concrete example for each remaining row of Table 1.

The next three examples involve a smooth quadric Q. After fixing a basis, we write
Q(x) = x\top Ax, where x is a column vector and A is an invertible symmetric matrix. For
vectors x and y, we define A(x, y) := x\top Ay, so Q(x) =A(x,x). The dual quadric Q\vee is defined
on the dual vector space. With respect to our choice of basis, we have Q\vee (\bfitu ) = \bfitu A - 1\bfitu \top ,
where \bfitu is a row vector.

Note that \nabla xQ= 2x\top A and \nabla \bfitu Q
\vee = 2A - 1\bfitu \top . The points on Q and Q\vee relate via

Q(\nabla \bfitu Q
\vee ) = 4Q\vee (\bfitu ).(7.1)

The gradients of Q and Q\vee have the following symmetry:

(\nabla xQ)(y) = 2A(x, y), \bfitv (\nabla \bfitu Q) = 2A - 1(\bfitv ,\bfitu ).(7.2)

The ambient vector space and its dual relate via Q and Q\vee , since

A(\nabla \bfitu Q
\vee , x) = 2\bfitu (x),

where \bfitu (x) is the multiplication \bfitu x of row vector \bfitu with column vector x.
We have the following biduality. Take \ell \in V (Q\vee ). Define p to cut out the tangent

hyperplane of Q\vee at \ell ; that is, define p :=\nabla \ell Q
\vee . Then p \in V (Q), by (7.1). We can compute

\ell = 1
4\nabla pQ, and hence \ell cuts out the tangent hyperplane of Q at p.
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Table 1
Some varieties of ML degree one.

Ex. \scrL F X \Phi X,\scrL ,F Description General
result

5.10 Sym2(\BbbC 
3) det V (k13)

\mathrm{d}\mathrm{e}\mathrm{t}(S2)
\mathrm{d}\mathrm{e}\mathrm{t}(S12) \mathrm{d}\mathrm{e}\mathrm{t}(S23)

Undirected graphical
model

Prop. 5.9

5.16 Sym2(\BbbC 
3) det V (k13k23  - k12k33)

s11s22 - s212
s11s22 \mathrm{d}\mathrm{e}\mathrm{t}(S)

Directed graphical
model

Prop. 5.15

7.1 \BbbP 2 \ell V (Q) \bfitu (p)
Q\vee (\bfitu )

Quadric curve, F linear Thm. 6.2

7.2 \BbbP n Q \BbbP n 4
Q\vee (\bfitu )

Linear space, F
quadratic

Thm. 4.5

7.3 \BbbP n Q\ell \BbbP n 16 \bfitu (p)

Q\vee (\bfitu )2
Linear space, F special Thm. 4.4

(n= 2)

7.4 Sym2(\BbbC 
3) det V (k32, k31, k

2
21

 - k11k22 + k11k33)

 - 4s22
(s22+s33)2(s

2
12 - s11s22)

Reciprocal linear space -

7.5 Sym2(\BbbC 
3) det V (k11  - k22)

4s33
\mathrm{d}\mathrm{e}\mathrm{t}(g\cdot S)23 \mathrm{d}\mathrm{e}\mathrm{t}(g\cdot S)13

Hyperplane Prop. 7.6

The following example is the degree-two case of Theorem 6.2.

Example 7.1. The statement of Theorem 6.2 involves a rational function \Phi = f
g . Set

g :=Q\vee . Then X = V (Q). Let \ell be such that Q\vee (\ell ) = 0. This setup satisfies the hypotheses
of Theorem 6.2, since Q\vee is degree two and \ell is a smooth point on Q\vee , i.e., a point of
multiplicity one. According to the theorem, Q is ML degree one with respect to \ell , and the
denominator of the corresponding solution to the homaloidal PDE is g, while the numerator
is f = \ell (\nabla \bfitu Q

\vee ). We simplify the expression of f using the equations in (7.2), concluding
that f = \bfitu (\nabla \ell Q

\vee ) = \bfitu (p), where p := \nabla \ell Q
\vee . Hence MLD\ell (X) = 1 and the solution to the

homaloidal PDE is

\Phi (\bfitu ) =
\bfitu (p)

Q\vee (\bfitu )
.

As a concrete instance, let Q\vee (u0, u1, u2, u3) = u0u1 - u2u3 and \ell = [ 1 0 0 0 ]. We have \nabla \bfitu Q
\vee =\biggl[ u1

u0

 - u3

 - u2

\biggr] 
and p=\nabla \ell Q

\vee =

\biggl[ 
0
1
0
0

\biggr] 
. Then \Phi (\bfitu ) = u1

u0u1 - u2u3
, with the associated variety cut out by

Q(x) = x0x1  - x2x3. We compute

MLE(\bfitu ) = - \nabla \bfitu log\Phi =
1

u0u1  - u2u3

\biggl[ u1
u0

 - u3

 - u2

\biggr] 
 - 1

u1

\biggl[ 
0
1
0
0

\biggr] 
.

The next example verifies that all smooth quadrics are homaloidal polynomials, as seen
in Theorem 4.5. We compute the associated solutions to the homaloidal PDE.

Example 7.2. We show that MLDQ(\BbbP n) = 1 and that the solution to the homaloidal PDE
is the reciprocal of the dual quadric
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\Phi (\bfitu ) =
4

Q\vee (\bfitu )
.

This is a consequence of the fact that Q(\nabla \bfitu Q
\vee ) = 4Q\vee (\bfitu ), which then implies

Q( - \nabla log\Phi ) =Q

\biggl( 
 - \nabla \bfitu log

4

Q\vee 

\biggr) 
=
Q(\nabla \bfitu Q

\vee )

(Q\vee )2
=

4

Q\vee .

Hence \Phi (\bfitu ) solves the homaloidal PDE. Moreover,

MLE(\bfitu ) = - \nabla \bfitu log\Phi =
\nabla \bfitu Q

\vee 

Q\vee (\bfitu )
.

The associated variety X of \Phi is \BbbP n because, as described in Corollary 5.3,

X = Im( - \nabla logQ\vee ) = Im(\nabla Q\vee )

and \nabla Q\vee is an invertible linear map, which is dominant.

Our third example verifies the fact that a product Q \cdot \ell of a smooth quadric Q and a linear
form \ell , with V (\ell ) tangent to V (Q), is a homaloidal polynomial. We compute the associated
solutions to the homaloidal PDE.

Example 7.3. Let dim\scrL = n+ 1. Let F = Q \cdot \ell be the product of a degree 2 polynomial
Q and the equation of its tangent hyperplane \ell at a point p = \nabla \ell Q

\vee . We show that F is
homaloidal. This extends Theorem 4.4(c), which is the case n= 2. We show that the solution
to the homaloidal PDE is

\Phi (\bfitu ) = 16
\bfitu (p)

Q\vee (\bfitu )2
,

where Q\vee is the dual quadric and p the point of tangency. Let Q(x) = xTAx. With this we
verify the first part of the suggested solution

 - \nabla log\Phi = 2
\nabla \bfitu Q

\vee 

Q\vee  - p

\bfitu (p)
(=MLE(\bfitu )),

Q( - \nabla log\Phi ) =Q

\biggl( 
2
\nabla \bfitu Q

\vee 

Q\vee  - p

\bfitu (p)

\biggr) 
=Q

\biggl( 
2
\nabla \bfitu Q

\vee 

Q\vee 

\biggr) 
 - 2A

\biggl( 
2
\nabla \bfitu Q

\vee 

Q\vee ,
p

\bfitu (p)

\biggr) 
+Q

\biggl( 
p

\bfitu (p)

\biggr) 
= 16

Q\vee 

(Q\vee )2
 - 8

\bfitu (p)

Q\vee \bfitu (p)
+ 0=

8

Q\vee .

Moreover we use (7.2), \ell (\nabla \bfitu Q
\vee ) =\bfitu (\nabla \ell Q

\vee ), which yields

\ell ( - \nabla log\Phi ) = \ell 

\biggl( 
2
\nabla \bfitu Q

\vee 

Q\vee  - p

\bfitu (p)

\biggr) 
= 2\ell 

\biggl( 
\nabla \bfitu Q

\vee 

Q\vee 

\biggr) 
 - 0 = 2\bfitu 

\biggl( 
\nabla \ell Q

\vee 

Q\vee 

\biggr) 
=

2\bfitu (p)

Q\vee .

To conclude, \Phi (\bfitu ) = 16 \bfitu (p)
Q\vee (\bfitu )2 yields a solution to the homaloidal PDE, since

Q \cdot \ell ( - \nabla \bfitu \Phi )=
8

Q\vee 
2\bfitu (p)

Q\vee =\Phi .
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We show that the image of \nabla log\Phi is all of \scrL , i.e., that the map is dominant, by finding its
inverse. More specifically, we show that  - \nabla log\Phi = (\nabla logF ) - 1. We compute

\nabla ( - \nabla \bfitu \mathrm{l}\mathrm{o}\mathrm{g}\Phi ) logF =
\ell 

\ell ( - \nabla \bfitu log\Phi )
+

1

Q( - \nabla \bfitu log\Phi )
\nabla ( - \nabla \bfitu \mathrm{l}\mathrm{o}\mathrm{g}\Phi )Q.

We expand these expressions to obtain

\ell ( - \nabla \bfitu log\Phi ) = \ell 

\biggl( 
2
\nabla \bfitu Q

\vee 

Q\vee (\bfitu )
 - p

\bfitu (p)

\biggr) 
=

2\ell (\nabla \bfitu Q
\vee )

Q\vee (\bfitu )
=

2\bfitu (p)

Q\vee (\bfitu )
;

Q ( - \nabla \bfitu log\Phi ) =Q

\biggl( 
2
\nabla \bfitu Q

\vee 

Q\vee (\bfitu )
 - p

\bfitu (p)

\biggr) 
=Q

\biggl( 
2
\nabla \bfitu Q

\vee 

Q\vee (\bfitu )

\biggr) 
 - 2A

\biggl( 
2
\nabla \bfitu Q

\vee 

Q\vee (\bfitu )
,
p

\bfitu (p)

\biggr) 
+ 0

=
16

Q\vee (\bfitu )
 - 8

\bfitu (p) \cdot Q\vee (\bfitu )
\ell (\nabla \bfitu Q

\vee ) =
8

Q\vee (\bfitu )
;

\nabla ( - \nabla \bfitu \mathrm{l}\mathrm{o}\mathrm{g}\Phi )Q=\nabla (2\nabla \bfitu Q\vee 
Q\vee (\bfitu )

 - p

\bfitu (p)
)Q=

2

Q\vee (\bfitu )
\nabla (\nabla \bfitu Q\vee )Q - 

1

\bfitu (p)
\nabla pQ= 8

\bfitu 

Q\vee (\bfitu )
 - 4

\bfitu (p)
\ell ,

where we have used that \nabla xQ is linear in x and that \nabla \nabla \bfitu Q\vee Q= 4\bfitu . Thus

\nabla ( - \nabla \bfitu \mathrm{l}\mathrm{o}\mathrm{g}\Phi ) logF =
Q\vee (\bfitu )

2\bfitu (p)
\ell +

Q\vee (\bfitu )

8
(8

\bfitu 

Q\vee (\bfitu )
 - 4

\bfitu (p)
\ell ) =\bfitu .

Example 7.4. Let X = V (k23, k13, k
2
12  - k11k22 + k11k33). This is the reciprocal variety of

the linear space \left(  x y 0
y z 0
0 0 z

\right)  .

This is an instance of a colored covariance graphical model; it is the graph with three nodes
that has a single edge 1  - 2 and nodes 2 and 3 with the same color. We can show that it
has ML degree one by computing \Phi and \Psi directly. This can be verified with a computer
algebra system, such as Macaulay2 [23]. Code for this and the next example can be found in
https://mathrepo.mis.mpg.de/GaussianMLDeg1. They are

\Phi (S) =
4s22

(s22 + s33)2(s11s22  - s212)
,

\Psi (S) =
 - 1
s22

\left(  0 0 0
0 1 0
0 0 0

\right)  +
2

s22 + s33

\left(  0 0 0
0 1 0
0 0 1

\right)  +
1

s11s22  - s212

\left(  s22  - s12 0
 - s12 s11 0
0 0 0

\right)  .

It would be interesting to generalize Example 7.4 to general reciprocal linear spaces. This
is the missing entry in Table 1.

Example 7.5. Consider the hyperplane X = V (k11  - k22)\subset Sym2(\BbbC 3). This is the colored
graphical model corresponding to the undirected 3-cycle with first two nodes having the same
color. It has ML degree one with

\Phi (S) =
4s33

det((gSg\top )23)det((gSg\top )13)
, where g=

\left(  1 1 0
1  - 1 0
0 0 1/2

\right)  .

We conclude by generalizing Example 7.5 to higher dimensional hyperplanes.
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Proposition 7.6. The solutions to the homaloidal PDE for ML degree one hyperplanes in
Sym2(\BbbC m) are the rational functions

\Phi (S) =
det
\bigl( 
(gSg\top )[n]\setminus \{ 1,2\} 

\bigr) 
det
\bigl( 
(gSg\top )[n]\setminus \{ 1\} 

\bigr) 
det
\bigl( 
(gSg\top )[n]\setminus \{ 2\} 

\bigr) ,
where g \in SL(\scrL ).

Proof. The action g \cdot K = gKg\top gives a containment SL(\BbbC m) \subset SL(Sym2(\BbbC m)). The
hyperplane X = V (tr(AK)) is ML degree one if and only if A is rank two, by [2, Proposition
4.3]. All such hyperplanes are in the same orbit under the action of SL(Sym2(\BbbC m)). Hence
there exists g such that

gAg\top =

\left(  0 1
1 0

0
0

0 0 0

\right)  ,

where 0 is a matrix of zeros of appropriate size. Thus X is SL(\BbbC m)-equivalent to the graphical
model k12 = 0.

We next show a more general statement, namely that if F is invariant under the action of
g \in SL(\scrL ), then MLDF (X) = 1 implies MLDF (g \cdot X) = 1. Moreover, \Phi g\cdot X,\scrL ,F = \Phi X,\scrL ,F \circ g\top ,
where g\top (\bfitu ) :=\bfitu \circ g. The map

\circ g\top : (\scrL \vee )\vee \rightarrow (\scrL \vee )\vee 

is the double-dual (g\top )\top , which is identified with g. We use the chain rule to compute

\nabla \bfitu (log\Phi X,\scrL ,F \circ g\top ) = (\nabla g\top (\bfitu ) log\Phi X,\scrL ,F ) \circ g\top = g \cdot (\nabla g\top (\bfitu ) log\Phi X,\scrL ,F ).

The model associated to \Phi X,\scrL ,F \circ g\top is g \cdot X, by Theorem 3.5. The function \Phi X,\scrL ,F \circ g\top is a
solution to homaloidal PDE, since F is invariant under the action of g, and therefore

F ( - \nabla \bfitu (log\Phi X,\scrL ,F \circ g\top )) = F (g \cdot ( - \nabla g\top (\bfitu ) log\Phi X,\scrL ,F ))

= F ( - \nabla g\top (\bfitu ) log\Phi X,\scrL ,F ) =\Phi X,\scrL ,F \circ g\top .

It remains to apply our group action to the expression for \Phi in Proposition 5.9.
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