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Introduction

These are lecture notes for the course Commutative Algebra and Algebraic Geometry,
held in Stockholm in Fall 2022. These notes cover the part of the course dealing with
commutative algebra. They are a self-contained introduction to the subject, following
the textbook Introduction to Commutative Algebra by Atiyah and Macdonald.
The supplementary material at the end of these notes rounds out some parts of the

theory that are either not mentioned in the textbook or used out of sequence.
Each section of these notes corresponds to two lectures in the course. We start with

the definition of a ring and end with Hilbert’s Nullstellensatz.
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1 Rings

Commutative algebra studies commutative rings, which we just call rings from now on.
The subject provides a theoretical common ground for algebraic geometry and algebraic
number theory. The typical example of a ring in algebraic geometry is the polynomial
ring K[t1, . . . , tn] in finitely many variables over a field K, while the typical example in
number theory is the ring of integers Z.

Commutative rings often appear in other subjects, too. In differential geometry for
instance, every manifold X has its ring of smooth functions C∞(X,R), and projective
modules over this ring correspond precisely to vector bundles on X.

∗ ∗ ∗

A ring is a set A together with two binary operations + and · such that
• (A,+) is an abelian group,
• xy = yx for all x, y ∈ A,
• (xy)z = x(yz) and x(y + z) = xy + xz for all x, y, z ∈ A,
• there exists 1 ∈ A such that 1x = x for all x ∈ A.

Remark. If 1 = 0 then x = 0 for all x ∈ A. Thus A is the zero ring {0}.

A ring homomorphism is a map of rings f : A→ B such that
• f is a homomorphism of abelian groups,
• f(xy) = f(x)f(y) for all x, y ∈ A,
• f(1) = 1.

A subset S ⊆ A is a subring of A if S is closed under +, · and 1 ∈ S. The identity
map S → A is then a ring homomorphism.
If f : A→ B and g : B → C are ring homomorphisms then so is g ◦ f .

Ideals and quotient rings

An ideal a of a ring A is an additive subgroup a ⊆ A such that Aa ⊆ a.
If a ⊆ A is an ideal, then we can form the quotient group A/a, which comes with its

structure group homomorphism p : A→ A/a sending x ∈ A to its equivalence class [x].
There is a unique binary operation · on A/a that makes A/a into a ring and p into a

ring homomorphism.

Proposition 1.1. The map {Ideals of A/a} → {Ideals of A that contain a} defined by
b 7→ p−1(b) is an order-preserving bijection.

Proof. The map defines an order-preserving bijection

{Additive subgroups of A/a} → {Additive subgroups of A that contain a}

whose inverse is given by b 7→ p(b). It remains to show that both the map and its inverse
send ideals to ideals. The former is true because p is a ring homomorphism. The latter,
because p is surjective.
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If f : A → B is a ring homomorphism then ker(f) ⊆ A is an ideal, im(f) ⊆ B is a
subring, and f induces a ring isomorphism A/ ker(f) ≃ im(f).

There’s a one-to-one correspondence between ring homomorphisms f : A/a→ B and
ring homomorphisms f : A→ B satisfying a ⊆ ker(f), given by the rule f([x]) := f(x).

Zero divisors, nilpotent elements, and units

A zero divisor of a ring A is an element x ∈ A such that xy = 0 for some y ∈ A \ {0}.
An integral domain is a nonzero ring with no zero divisors ̸= 0.
An element x ∈ A is nilpotent if xn = 0 for some n > 0.
An element x ∈ A is a unit if xy = 1 for some y ∈ A. If such a y exists it is unique

and is written x−1. The units in A form an abelian group (A×, ·).
For x ∈ A, the set (x) := {ax | a ∈ A} is an ideal. Such ideals are called principal.

The element x is a unit if and only if (x) = A.
A field is a ring A ̸= 0 where A× = A \ {0}. Every field is an integral domain.

Proposition 1.2. Let A ̸= 0 be a ring. The following are equivalent:
(1) A is a field;
(2) the only ideals in A are (0) and (1);
(3) every ring homomorphism f of A into a ring B ̸= 0 is injective.

Proof. (1) ⇒ (2). Let a be an ideal, let x ̸= 0 in a. Since x is a unit, A = (x) ⊆ a.
(2) ⇒ (3). The kernel ker(f) is an ideal which cannot be (1), so it equals (0).
(3) ⇒ (1). Let x ∈ A. If (x) ̸= A then A/(x) ̸= 0, thus the structure morphism

A→ A/(x) is injective, hence its kernel (x) equals (0), so x = 0.

Prime ideals and maximal ideals

An ideal p ⊆ A is prime if p ̸= A and for all x, y ∈ A, if xy ∈ p then x ∈ p or y ∈ p.
An ideal m ⊆ A is maximal if m ̸= A and there is no ideal a such that m ⊊ a ⊊ A.
Equivalently,
• p is prime ⇔ A/p is an integral domain,
• m is maximal ⇔ A/m is a field. (By Prop. 1.1 and 1.2).

A maximal ideal is prime. A ring A is an integral domain if and only if (0) is prime.

Theorem 1.3. Every ring A ̸= 0 has a maximal ideal.

Proof. Recall Zorn’s lemma:

Let S be a nonempty partially ordered set such that every totally ordered
subset T ⊆ S has an upper bound in S. Then S has a maximal element.

Apply this to the set S of all ideals ̸= A in A, ordered by inclusion. This set is nonempty
because (0) ∈ S. If T ⊆ S is totally ordered then

⋃
T is an ideal ̸= A, so

⋃
T ∈ S is an

upper bound for T . Hence S has a maximal element.

Corollary 1.4. If a ̸= A is an ideal of A, there exists a maximal ideal of A containing a.
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Proof. Apply Thm. 1.3 to A/a and use Prop. 1.1.

Corollary 1.5. Every non-unit x of A is contained in a maximal ideal.

Proof. We have (x) ̸= A. Now apply Cor. 1.4.

A local ring is a ring A with exactly one maximal ideal m. Its residue field is A/m.

Proposition 1.6. Let A be a ring and m ⊆ A an ideal. If every x ∈ A \m is a unit, then
A is a local ring and m its maximal ideal.

Proof. If a ̸= A is an ideal, then a ⊆ A \A× ⊆ m, so m is the only maximal ideal.

The nilradical

Proposition 1.7. The set nil(A) of all nilpotent elements in a ring A is an ideal, and
A/ nil(A) has no nilpotent element ̸= 0.

Proof. Let x, y ∈ nil(A) and a ∈ A. Then xm = yn = 0 for some n,m > 0. We have
(ax)n = 0, so ax ∈ nil(A), and

(x+ y)m+n =
∑

r+s=m+n

(
r

m+ n

)
xrys = 0,

since if r + s = m+ n then r ≥ m or s ≥ n. Hence x+ y ∈ nil(A).
Let x ∈ A such that its image x in A/ nil(A) is nilpotent. Then xn = 0 for some n > 0,

so xn ∈ nil(A). Hence 0 = (xn)m = xn+m for some m > 0, so x ∈ nil(A) and x = 0.

The ideal nil(A) is the nilradical of A.

Lemma 1.8. Let f : A → B be a ring homomorphism and p ⊆ B a prime ideal. Then
pc := f−1(p) is a prime ideal.

Proof. We have pc ̸= (1) since p ̸= (1) and pc = ker(A → B/p), so A/pc is isomorphic
to a subring of B/p, which is an integral domain.

Lemma 1.9. Let A be a ring, f ∈ A, and Af := A[t]/(tf − 1). Then Af = 0 if and only
if f is nilpotent.

Proof. For “⇐”, the image of f under A→ Af is nilpotent and a unit, thus Af = 0.
For “⇒”, if Af = 0 then −1 ∈ (tf − 1) in A[t]. Thus there exists a polynomial

g(t) = a0 + a1t+ . . .+ ant
n such that tfg(t)− g(t) + 1 = 0. By comparing coefficients,

we find a0 = 1, a1 = f, . . . , an = fn, fan = 0, so f ∈ nil(A).

Proposition 1.10. Let N be the intersection of all prime ideals of A. Then nil(A) = N.

Proof. If f ∈ A and p is prime, fn = 0 implies f ∈ p since 0 ∈ p. Hence nil(A) ⊆ N.
Next, if f ̸∈ nil(A), then Af ̸= 0. Let m ⊆ Af be a maximal ideal and p := s−1(m),

where s : A→ Af is the natural homomorphism. Then s(f) ̸∈ m since s(f) is a unit. So
f ̸∈ p. Since p is prime, f ̸∈ N.
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Operations on ideals

The intersection
⋂

i∈I ai of any family (ai)i∈I of ideals is an ideal. Thus for any subset
E ⊆ A the set (E) :=

⋂
a⊇E a, where a runs over all ideals containing E, is an ideal, the

ideal generated by E. It is the smallest ideal containing E. We have

(E) = AE :=

{
n∑

i=1

aixi | n ∈ N, ai ∈ A, xi ∈ E

}
.

If E = {x1, . . . , xn} is finite, we write (E) = (x1, . . . , xn).
If (ai)i∈I is a family of ideals, their sum

∑
i∈I ai is the ideal generated by

⋃
i∈I ai. If

I = {1, . . . , n} is finite, the sum is a1 + · · ·+ an = {x1 + . . .+ xn | xi ∈ ai}.
For I finite, the product a1 · · · an is the ideal generated by all products x1 · · ·xn with

xi ∈ ai. In particular an is defined for any ideal a and n ≥ 0, where a0 = (1).
If a+ b = (1), the ideals a and b are called coprime.
Let A1, . . . , An be rings. Their direct product

A =
n∏

i=1

Ai = {(x1, . . . , xn) | ai ∈ Ai}

is a ring with componentwise addition and multiplication, and 1 = (1, . . . , 1). It comes
with ring homomorphisms (‘projections’) pi : A→ Ai with pi(x) = xi.

Proposition 1.11. Let A be a ring and a1, . . . , an ⊆ A ideals. Define the homomorphism

φ : A→
n∏

i=1

(A/ai)

by applying the structure morphisms A→ A/ai componentwise.
(1) If ai, aj are coprime for all i ̸= j, then

∏
i ai =

⋂
i ai.

(2) φ is surjective if and only if ai, aj are coprime for all i ̸= j.
(3) φ is injective if and only if

⋂
i ai = 0.

Proof. (1) We have
∏

i ai ⊆
⋂

i ai. For “⊇”, use induction on n.
Let n = 2 and b1 ∈ a1, b2 ∈ a2 with b1 + b2 = 1. Let a ∈ a1 ∩ a2. Then

a = (b1 + b2)a = b1a+ b2a ∈ a1a2.

Now let n > 2 and b =
∏

i>1 ai. For i > 1, let ai ∈ a1, bi ∈ ai with ai + bi = 1.
Then 1 = (a2 + b2) · · · (an + bn) ∈ a1 + b2 · · · bn, thus a1 + b = (1). Hence,⋂

i≥1

ai = a1 ∩
⋂
i>1

ai = a1 ∩ b = a1b =
∏
i≥1

ai.

(2) For “⇒”, let i ̸= j. Let x ∈ A with x ≡ 1 (mod ai) and x ≡ 0 (mod aj). Then

1 = 1− x+ x ∈ ai + aj .
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For “⇐”, note that each y ∈
∏

iA/ai can be written as y =
∑n

i=1 φ(ai)ei for some
a1, . . . , an ∈ A, where ei := (δij)

n
j=1 ∈

∏
iA/ai. So, it suffices to show that all the

ei have a preimage x. Let i ∈ {1, . . . , n}. For all j ̸= i, let aj ∈ ai, bj ∈ bj with
aj + bj = 1. Then 1 =

∏
i ̸=j(aj + bj), so x :=

∏
i ̸=j bj does the job.

(3) This follows since ker(φ) =
⋂

i ai.

Proposition 1.12. Let p1, . . . , pn be prime ideals, let a be an ideal with a ⊆
⋃n

i=1 pi.
Then a ⊆ pi for some i.

Proof. Use induction on n. For n = 1 the statement is true. For n > 1, suppose a ̸⊆ pi
for all i. Then for all i and all j ̸= i we have a ̸⊆ pj . By the inductive assumption,
for all i we have a ̸⊆

⋃
j ̸=i pj . So for all i there exists xi ∈ a such that for all j ̸= i

we have xi ̸∈ pj . If for any particular i we have xi ̸∈ pi then we are done, since we
found an element xi ∈ a \

⋃n
i=1 pi. Thus we may assume that xi ∈ pi for all i. Now let

y =
∑n

i=1

∏
j ̸=i xj . Then y ∈ a and for all i we have y ≡

∏
j ̸=i xj ̸≡ 0 (mod pi). Thus

for all i we have y ̸∈ pi. So a ̸⊆
⋃n

i=1 pi.

Proposition 1.13. Let a1, . . . , an be ideals and let p be a prime ideal with p ⊇
⋂n

i=1 ai.
Then p ⊇ ai for some i. If p =

⋂n
i=1 ai, then p = ai for some i.

Proof. We have p ⊇
⋂n

i=1 ai ⊇
∏n

i=1 ai. Assume there exists xi ∈ ai \ p for all i. Then∏n
i=1 xi ̸∈ p because p is prime. So p ̸⊇

⋃n
i=1 ai. For the second statement, let p ⊇ ai for

some i. Then ai ⊇
⋂n

i=1 ai = p ⊇ ai, so p = ai.

If a, b ⊆ A are ideals, the ideal quotient of a by b is the ideal

(a : b) := {x ∈ A | xb ⊆ a}.

In particular, (0 : b) is the annihilator ann(b) of b.
The radical of an ideal a ⊆ A is

√
a = rad(a) = r(a) := {x ∈ A | xn ∈ a for some n > 0}.

It is the inverse image of nil(A/a) under the structure homomorphism A→ A/a, hence
an ideal by Proposition 1.7.

Proposition 1.14. (1) a ⊆ r(a)
(2) r(r(a)) = r(a)
(3) r(ab) = r(a ∩ b) = r(a) ∩ r(b)
(4) r(a) = (1)⇔ a = (1)
(5) r(a+ b) = r(r(a) + r(b))
(6) if p is prime then r(pn) = p for all n > 0.

Proof. Exercise.

Proposition 1.15. We have rad a =
⋂
p, where p runs through the prime ideals ⊇ a.

Proof. Apply Prop. 1.10 to A/a.
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Extension and contraction

Let f : A → B be a ring homomorphism, a ⊆ A and b ⊆ B ideals. The extension of a
is ae := Bf(a). It is an ideal of B while f(a) is not. We have a prime ̸⇒ ae prime.

The contraction of b is bc := f−1(b). It is an ideal of A. We have b prime⇒ bc prime.

Exercise 0. Let K be a field and f ∈ K[t1, . . . , tn] be a polynomial in n variables.
Then we can see f as a function Kn → K by sending a point x = (x1, . . . , xn) to
f(x) := f(x1, . . . , xn). The vanishing set of f is V (f) := {x ∈ Kn | f(x) = 0}.
(1) Let K be infinite. Show that V (f) = Kn if and only if f = 0.
(2) Let K be algebraically closed. Show that V (f) = ∅ if and only if f is a unit.

Exercise 1. Let A := K[t1, . . . , tn], where K is a field, and let x ∈ Kn be a point.
(1) Show that the evaluation map φx : A→ K defined by φx(f) = f(x) is a surjective

ring homomorpism.
(2) Let mx := ker(φx). Give a finite set of generators for mx.
(3) Show that mx is a maximal ideal of A.
(4) Let y ∈ Kn be another point. Show that if x ̸= y then mx ̸= my.
(5) Let

Ax :=

{
f

g
| f, g ∈ A, g(x) ̸= 0

}
,

seen as a subring of the function field K(t1, . . . , tn). Show that Ax is a local ring.

Exercise 2. Let K be a field and A := K[t1, . . . , tn]. The variety of a subset E ⊆ A is

V (E) := {x ∈ Kn | f(x) = 0 for all f ∈ E}.

(1) Let E ⊆ A be a subset and a the ideal generated by E. Show that

V (E) = V (a) = V (rad a).

(2) Show that V ((0)) = Kn and V ((1)) = ∅.
(3) Let (ai)i∈I be a family of ideals of A. Show that V (

∑
i∈I ai) =

⋂
i∈I V (ai).

(4) Let a, b be ideals of A. Show that V (a ∩ b) = V (ab) = V (a) ∪ V (b).
(5) Let a be an ideal of A and x ∈ Kn. Show that x ∈ V (a) if and only if mx ⊇ a.

Deduce that V (mx) = {x}.

2 Modules

For any ring A we can define the class of A-modules, which can be seen as “linear objects”
over A. Modules are a quite general kind of object. They allow us to consider many
common constructions in algebra on the same footing. For instance, the ideals a ⊆ A,
the ring A itself, and the quotient rings A/a are all A-modules, as well as all rings B
which have a ring homomorphism A→ B pointing to them.

If A = K is a field, then the class of A-modules coincides with that of K-vector
spaces. If A = Z, then the A-modules are precisely the abelian groups. We will see in
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the exercises that if A = K[t1, . . . , tn], then every A-module can be seen as a family of
K-vector spaces indexed by the elements of Kn. This interpretation helps us visualize
modules over polynomial rings, although it does not give a one-to-one correspondence.

∗ ∗ ∗

A module over a ring A is an abelian group (M,+) together with a map · : A×M →M
such that for all a, b ∈ A and x, y ∈M ,

• a(x+ y) = ax+ ay,
• (a+ b)x = ax+ bx,
• (ab)x = a(bx),
• 1x = x.

An A-module homomorphism between two A-modules M and N is a map f : M → N
such that for all a ∈ A and x, y ∈M ,

• f(x+ y) = f(x) + f(y),
• f(ax) = af(x).

The composition of two A-module homomorphisms is an A-module homomorphism.
We may turn the set of all A-module homomorphism from M to N into an A-module

by setting, for f, g : M → N , a ∈ A, and x ∈M ,
• (f + g)(x) := f(x) + g(x),
• (af)(x) := af(x).

This A-module is denoted by HomA(M,N) or Hom(M,N).
An A-module homomorphism f : N1 → N2 induces an A-module homomorphism

f ◦ − : Hom(M,N1)→ Hom(M,N2)

by composing with f . A homomorphism g : M1 →M2 induces a homomorphism

− ◦ g : Hom(M2, N)→ Hom(M1, N)

by pre-composing with g. Thus, the constructions Hom(−, N) and Hom(M,−) can be
applied to modules and to module homomorphisms. This makes them functors.

Examples 2.1. (1) A is an A-module.
(2) If a ⊆ A is an ideal, then a and A/a are A-modules.
(3) If f : A→ B is a ring homomorphism, then B is an A-module via a · b := f(a)b.
(4) HomA(A,M) ≃M as A-modules via f 7→ f(1).
(5) M∨ := HomA(M,A) ̸≃M in general. For instance, HomZ(Z/(2),Z) = 0.

Submodules and quotient modules

Let M be an A-module. A submodule of M is a subgroup M ′ ⊆M such that AM ′ ⊆M ′.
It is an A-module. The quotient group M/M ′ is an A-module via a[x] := [ax]. It is
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called the quotient of M by M ′. The structure map M → M/M ′ is an A-module ho-
momorphism. This map induces a one-to-one order-preserving correspondence between
the submodules of M/M ′ and the submodules of M which contain M ′.
If f : M → N is an A-module homomorphism, then ker(f) and im(f) are submodules

of M , respectively N . The cokernel coker(f) := N/ im(f) is a quotient module of N .
If M ′ ⊆ M is a submodule, then A-module homomorphisms f : M/M ′ → N corre-

spond to homomorphisms f : M → N such that M ′ ⊆ ker(f), via f([x]) := f(x). We
have ker(f) = ker(f)/M ′ and im(f) = im(f). Thus, f induces an A-module isomorphism

M/ ker(f) ≃ im(f).

Operations on submodules

For an A-module M and submodules (Mi)i∈I of M , we can form the sum
∑

iMi and the
intersection

⋂
iMi, both submodules of M . The sum is the smallest submodule of M

which contains all the Mi. It consists of all finite sums of the form
∑

i xi with xi ∈Mi.

Proposition 2.2. Let N1, N2 ⊆M ⊆ L be A-modules. Then

(L/N)/(M/N) ≃ L/M,

(M1 +M2)/M1 ≃M2/(M1 ∩M2).

Proof. Same proof as for abelian groups, once one verifies that the relevant homomor-
phisms are A-module homomorphisms.

If M is an A-module and a an ideal, the product aM consists of all the finite sums of
the form

∑
aixi with ai ∈ a and xi ∈M . It is a submodule of M .

The annihilator of M is ann(M) := {a ∈ A | aM = 0}. It is an ideal of A. If
a ⊆ ann(M) is an ideal, then M can be seen as an A/a-module via [x]m := xm.
If M is an A-module and x ∈ M , then Ax := (x) := {ax | a ∈ A} is a submodule. A

family (xi)i∈I of elements xi ∈M is a set of generators of M if M =
∑

i∈I Axi. We say
that M is finitely generated if it has a finite set of generators.

Direct sum and product

Let (Mi)i∈I be a family of A-modules. Their direct sum
⊕

i∈I Mi is the set of finite
formal sums of the form

∑
i xi for xi ∈ Mi. Their direct product

∏
i∈I Mi is the set

of families (xi)i∈I with xi ∈ Mi. Both are A-modules: the latter via componentwise
addition and scalar multiplication, the former by seeing it as the submodule⊕

i∈I
Mi := {(xi)i∈I | xi = 0 for all but finitely many i} ⊆

∏
i∈I

Mi.

Thus, if I is finite then
⊕

i∈I Mi =
∏

i∈I Mi.
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Finitely generated modules

An A-module of the form A(I) :=
⊕

i∈I A for some index set I, or one isomorphic to
such, is called free. If I = {1, . . . , n} is finite we write An for this, and set A0 := {0}.

Proposition 2.3. Let I be an index set. An A-module M is generated by a family (xi)i∈I
if and only if M is isomorphic to a quotient of A(I).

Proof. If M =
∑

iAxi then
∑

i ai 7→
∑

i aixi defines a surjective A-module homomor-
phism A(I) → M . Conversely, If there is a surjective homomorphism A(I) → M then
the images of the elements ei for i ∈ I generate M .

Remark. Every A-module M has a set of generators: just take M itself. Thus every
module is a quotient of a free module.

Proposition 2.4 (Nakayama’s Lemma). Let M be a finitely generated A-module and
a ⊆ A an ideal with aM = M . Then there exists b ∈ 1 + a with bM = 0.

Proof. Let (x1, . . . , xn) generate M and proceed by induction on n. For n = 1, the
statement is true. For n > 1, let N := M/Axn. Then there exists b ∈ 1+a with bN = 0,
i.e. bM ⊆ Axn. Write xn =

∑n
i=1 aixi where ai ∈ a. Then bxn =

∑n
i=1 aibxi ∈ axn. So,

let a ∈ a with bxn = axn. Then (b− a)b ∈ 1 + a and (b− a)bM ⊆ (b− a)(xn) = 0.

Proposition 2.5. Let M be a finitely generated A-module and let a ⊆ A be an ideal
contained in all maximal ideals of A. Then aM = M implies M = 0.

Proof. Let b ∈ 1 + a be as in Prop. 2.4. Then bM = 0. But b is a unit since it is not
contained in a maximal ideal of A (Cor. 1.5). Hence M = 0.

Corollary 2.6. Let M be a finitely generated A-module, N ⊆M a submodule, a ⊆ A an
ideal contained in all maximal ideals of A. Then aM +N = M implies N = M .

Proof. We have a(M/N) = (aM +N)/N. Now apply Nakayama’s Lemma to M/N .

Let M be an A-module, m ⊆ A a maximal ideal, and K = A/m. Then the module
M/mM can be seen as an A/m-module, i.e. a K-vector space.

Proposition 2.7. Let (A,m) be a local ring and K = A/m. Let M a finitely-generated
A-module and x1, . . . , xn ∈M such that M/mM is generated by ([xi])

n
i=1 over K. Then

M is generated by (xi)
n
i=1 over A.

Proof. Let N =
∑n

i=1Axi. Then the composite N →M →M/mM is surjective, hence
N +mM = M , hence N = M by Cor. 2.6.
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Tensor product of modules

Let M,N,L be A-modules. A map f : M × N → L is A-bilinear if for all x ∈ M and
y ∈ N , the maps f(x,−) : N → L and f(−, y) : M → L are A-linear.

A module T together with an A-bilinear map g : M ×N → T is a tensor product of
M and N if for all A-modules L and A-bilinear maps f : M × N → L there exists a
unique A-linear map f ′ : T → L such that f = f ′ ◦ g.

Proposition 2.8. Let M,N be A-modules. Then there exists a tensor product (T, g) of
M and N . If (T ′, g′) is another tensor product, then there exists a unique A-module
isomorphism j : T

∼−→ T ′ such that j ◦ g = g′.

We thus speak of the tensor product of M and N , and denote it by M⊗AN or M⊗N .
We write x⊗ y for the image of a pair (x, y) under the structure map M ×N →M ⊗N .

Proof. We construct the tensor product T as the quotient module of the free A-module
A(M×N) =

⊕
(x,y)∈M×N Ae(x,y) by the submodule R generated by all elements of the

form
e(x+x′,y) − e(x,y) − e(x′,y),

e(x,y+y′) − e(x,y) − e(x,y′),

e(ax,y) − ae(x,y),

e(x,ay) − ae(x,y),

with x, x′ ∈M,y, y′ ∈M ′, a ∈ A. We then define the structure map as the composition
g : M ×N → A(M×N) → T with g(x, y) = [e(x,y)]. It is an A-bilinear map.

Now let f : M ×N → L be A-bilinear. An A-linear map f ′ : T → L is uniquely given
by an A-linear map f̃ : A(M×N) → L with R ⊆ ker(f̃). In turn, f̃ is uniquely determined
by its value f̃(e(x,y)) at each basis element e(x,y) ∈ A(M×N), where (x, y) ∈ M ×N . By

the definition of tensor product we are forced to take f̃(e(x,y)) = f(x, y). But since f is

bilinear we have R ⊆ ker(f̃). Hence, the required f ′ exists and is unique.
Finally, let (T ′, g′) be another tensor product. Applying the tensor product property

of T to the bilinear map g′ gives a linear map j : T → T ′ such that g′ = j ◦ g. By
symmetry we get a linear map j′ : T ′ → T such that g = j′ ◦ g′. Now ι := j′ ◦ j is a
linear map T → T satisfying g = ι ◦ g. So is the identity. Thus ι = id and by symmetry,
j ◦ j′ = id. Thus j is an isomorphism, unique with the property that j ◦ g = g′.

Remarks. (1) If (xi)i∈I and (yj)j∈J are sets of generators of M resp. N , then the
(xi ⊗ yj)(i,j)∈I×J generate M ⊗N . Indeed, M ⊗N is generated by the images of
the e(x,y) for x ∈M , y ∈ N . Writing x =

∑
i aixi and y =

∑
j bjyj , we see that

[e(x,y)] = x⊗ y = (
∑
i

aixi)⊗ (
∑
j

bjyj) =
∑
i,j

aibjxi ⊗ yj .

(2) It is tricky to determine whether a specific element of M ⊗N is zero or not. For
instance, 2⊗ 1 is zero in Z⊗Z Z/2Z but not in 2Z⊗Z Z/2Z.
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(3) We could construct a ‘multilinear’ tensor product M1 ⊗ · · · ⊗Mr of A-modules
M1, . . . ,Mr by replacing all bilinear maps in the construction of the tensor product
with multilinear ones. But the nested tensor product M1 ⊗ (M2 ⊗ (· · · ⊗Mn) · · · )
already satisfies the obvious defining property of the ‘multilinear’ tensor product.

Proposition 2.9. Let M,N,L. There exist isomorphisms

M ⊗N
∼−→ N ⊗M where x⊗ y 7→ y ⊗ x,

(M ⊗N)⊗ L
∼−→M ⊗ (N ⊗ L) where (x⊗ y)⊗ z 7→ x⊗ (y ⊗ z),

(M ⊕N)⊗ L
∼−→ (M ⊗ L)⊕ (N ⊗ L) where (x+ y)⊗ z 7→ x⊗ z + y ⊗ z,

A⊗M
∼−→M where a⊗ x 7→ ax.

Proof. For each of these isomorphisms, check that the right-hand side satisfies the tensor
product property with respect to the A-modules on the left-hand side. The structure
maps that we use on the right-hand side will then give us the concrete isomorphisms.

Let A, B be rings. An (A,B)-bimodule N is a (left) A-module, simultaneously a
(right) B-module such that for all a ∈ A, x ∈ N and b ∈ B we have (ax)b = a(xb).

Proposition 2.10. Let A,B be rings, M an A-module, L a B-module and N an (A,B)-
bimodule. Then M ⊗A N and N ⊗B L are naturally (A,B)-bimodules, and we have

(M ⊗A N)⊗B L ≃M ⊗A (N ⊗B L)

as (A,B)-bimodules.

Proof. Again, check that theB-module on the right-hand side satisfies the tensor product
property for the B-modules on the left-hand side, and that the A-module of the left-hand
side satisfies the tensor product property for the A-modules on the right-hand side.

Two A-module homomorphisms f : M → M ′ and g : N → N ′ induce an A-module
homomorphism

f ⊗ g : M ⊗N →M ′ ⊗N ′

such that (f ⊗ g)(x ⊗ y) = f(x) ⊗ g(y). If f ′ : M ′ → M ′′ and g′ : N ′ → N ′′ are two
further homomorphisms, then (f ′ ⊗ g′) ◦ (f ⊗ g) = (f ′ ◦ f)⊗ (g′ ◦ g).

Restriction and extension of scalars

Let f : A→ B be a ring homomorphism, N a B-module. Then N can be made into an
A-module AN , the restriction of scalars, via ax := f(a)x for a ∈ A, x ∈ N .

Now let M be an A-module. The A-module B ⊗A M can be made into a B-module
MB, the extension of scalars, by requiring b(b′⊗x) = bb′⊗x for all b, b′ ∈ B and x ∈M .

Proposition 2.11. (1) If N is a finitely generated B-module and B is finitely generated
as an A-module, then AN is a finitely generated A-module.

(2) If M is a finitely generated A-module then MB is a finitely generated B-module.
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Proof. If (y1, . . . , yn) generatesN overB, (b1, . . . , bk) generatesB overA and (x1, . . . , xm)
generates M over A, then (biyj | (i, j) ∈ {1, . . . , k} × {1, . . . , n}) generates AN over A
and (1⊗ x1, . . . , 1⊗ xm) generates MB over B.

Algebras

An A-algebra is a ring B together with a ring homomorphism f : A→ B. Equivalently,
it is a ring B together with an A-module structure compatible with the ring structure.
An homomorphism between two A-algebras B and C is a ring homomorphism B → C

which is compatible with the structure homomorphisms A → B and A → C. Equiva-
lently, it is a ring homomorphism B → C which is also an A-module homomorphism.

An A-algebra f : A → B is finite if B is finitely-generated as an A-module. It is of
finite type if f extends to a surjective A-algebra homomorphism A[t1, . . . , tn] → B for
some n ∈ N. In particular, every finite A-algebra is of finite type.

Example 2.12. Let A ⊆ B. Then B is finitely-generated as an A-algebra if and only
if B = A[x1, . . . , xn] for some x1, . . . , xn ∈ B. Here, A[x1, . . . , xn] denotes the smallest
subring of B that contains A and all the xi, equivalently the image of the ring homomor-
phism A[t1, . . . , tn]→ B that sends ti to xi. On the other hand, B is finitely-generated
as an A-module if and only if B = Ay1 + · · ·+Aym for some y1, . . . , ym ∈ B.

Example 2.13. Let K be a field. The K-algebras of finite type are precisely the rings A
such that A ≃ K[t1, . . . , tn]/a for some n ∈ N and some ideal a ⊆ K[t1, . . . , tn]. Such a
K-algebra A is finite if and only if it is additionally a finite-dimensional K-vector space.

Tensor product of algebras

Let B,C be A-algebras. The A-module D := B ⊗A C becomes an A-algebra as follows.
The ring multiplication on D is given by the A-bilinear map D×D → D determined by
the A-linear map D ⊗D

∼−→ B ⊗C ⊗B ⊗C → D, where the last map is determined by
the A-bilinear map B × C ×B × C → D defined by (b, c, b′, c′) 7→ bb′ ⊗ cc′. Thus in D,

(b⊗ c) · (b′ ⊗ c′) = bb′ ⊗ cc′.

This makes D into a ring with identity element 1⊗1. The ring homomorphism A→ D
given by a 7→ a⊗ 1 = 1⊗ a makes D into an A-algebra.

Exercise 3. Let M be a module over A := K[t1, . . . , tn], K a field. For all x ∈ Kn, define

M |x := M/mxM.

(1) Show that M |x can be made into a K-vector space in two equivalent ways, one
using the inclusion K → A and one using the evaluation morphism φx : A→ K.

(2) Find n ∈ N, an A-module M , and x, y ∈ Kn such that dimM |x ̸= dimM |y.
(3) Find n ∈ N and A-modules M ̸≃ N such that dimM |x = dimN |x for all x ∈ Kn.
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(4) Define
Supp(M) := {x ∈ Kn |M |x ̸= {0}}.

Show that Supp(M) ⊆ V (ann(M)).
(5) Now let M be finitely generated. Show that Supp(M) = V (ann(M)).

Exercise 4. In this exercise, you’ll compute examples of tensor products in various ways.
(1) Show that Z/mZ⊗Z Q = 0.
(2) Let K be a field and V,W finite-dimensional K-vector spaces. Show that

dim(V ⊗K W ) = dim(V ) dim(W ).

(3) Let K be a field. Show that

K[t1, . . . , tn]⊗K K[s1, . . . , sm] ≃ K[t1, . . . , tn, s1, . . . , sm]

as K-algebras.
(4) Let M be an A-module and a ⊆ A an ideal. Show that

A/a⊗A M ≃M/aM

as A-modules.
(5) Let M , N be modules over A := K[t1, . . . , kn], K a field. Show that for all x ∈ Kn,

(M ⊗A N)|x ≃M |x ⊗K N |x

as K-vector spaces.

3 Localizations

Localization of a ring A is an algebraic construction similar to taking quotient rings or
rings of polynomials over A. While the former sets a collection of elements to zero and
the latter adds new elements to the ring, a localization makes a collection of elements
S ⊆ A invertible. Here, care has to be taken because S might contain zero divisors,
which may force some elements ̸= 0 in A to become zero in the localization.

Most common are the localization Af at an element f ∈ A and the localization Ap

away from a prime ideal p ⊆ A. If A = K[t1, . . . , tn] for a field K, then the former is
the ring of rational functions defined on the complement D(f) of V (f) ⊆ Kn, while the
latter is the ring of rational functions defined at least somewhere on V (p).

∗ ∗ ∗

A multiplicative subset of a ring A is a subset S ⊆ A such that
• 1 ∈ S
• If x, y ∈ S then xy ∈ S.

A localization of A at S is an A-algebra f : A→ T such that
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• f(S) ⊆ T×;
• For all t ∈ T there exist a ∈ A, s ∈ S such that t = f(a)f(s)−1;
• For all a ∈ ker(f) there exists s ∈ S such that sa = 0.

Construction 3.1. We construct a localization of A at S, the ring of fractions S−1A.
As a set, S−1A = (A× S)/∼, where

(a, s) ∼ (b, t) if and only if u(at− bs) = 0 for some u ∈ S.

This is an equivalence relation. If (a, s) ∈ A× S, we write a/s for its image in S−1A. If
(b, t) ∈ A× S is another element, then

a

s
=

b

t
if and only if uat = ubs for some u ∈ S.

The ring operations are defined as follows:

(a/s) + (b/t) = (at+ bs)/(st),

(a/s)(b/t) = (ab)/(st).

These are well-defined, and make S−1A into a ring, with 0 := 0/1 and 1 := 1/1.
The structure morphism A→ S−1A is defined by f(x) = x/1.
It can now be checked that S−1A is a localization of A at S.

Proposition 3.2. Let S ⊆ A be a multiplicative subset and f : A → T an A-algebra.
If f(S) ⊆ T× then there exists a unique A-algebra homomorphism h : S−1A → T . If
additionally f is a localization of A at S, then h is an isomorphism.

Proof. Since (a/s)(s/1) = a/1, we are forced to take h(a/s) := g(a)g(s)−1 for all a/s ∈
S−1A. This is well-defined since if a/s = 0 then ua = 0 for some u ∈ S, thus g(u)g(a) =
0, so g(a) = 0. It can now be verified that h is a ring homomorphism. Surjectivity resp.
injectivity of h are equivalent to the second resp. third property of a localization.

Examples 3.3. (1) Let p ⊆ A be an ideal. Then p is prime if and only if S := A \ p is
multiplicative. In this case, Ap := S−1A is the localization of A at p.

(2) If A is an integral domain, then Frac(A) := A(0) is the fraction field of A.
(3) For example, Frac(Z) = Q and Frac(k[t1, . . . , tn]) = k(t1, . . . , tn).
(4) We have S−1A = 0 if and only if 0 ∈ S.
(5) If f ∈ A then S := {fn | n ≥ 0} is multiplicative and Af := S−1A ≃ A[t]/(tf − 1).

Proposition 3.4. Let A be a ring and S a multiplicative subset. Let a ⊆ A, b ⊆ S−1A
be ideals. Then:
(1) ae = {a/s | a ∈ a, s ∈ S}.
(2) (ae)c = {x ∈ A | sx ∈ a for some s ∈ S}.
(3) ae = (1) if and only if there exists s ∈ a ∩ S.
(4) b = (bc)e.

Proof. (1) ‘⊇’ is clear. For ‘⊆’, bring the sum
∑

i ai/si to a common denominator.
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(2) If x ∈ (ae)c, then x/1 ∈ ae. Thus, x/1 = x′/s for some x′ ∈ a, s ∈ S, so there
exists u ∈ S with usx = ux′ ∈ a. Conversely, if sx ∈ a for some s ∈ S, then
x/1 = sx/s ∈ ae, so x ∈ (ae)c.

(3) Follows from (2) and the fact that bc = (1) if and only if b = (1).
(4) (bc)e = {b/s | b ∈ bc} = {b/s | b/1 ∈ b} = b.

Proposition 3.5. There is an order-preserving one-to-one correspondence

{Prime ideals q of S−1A} 1:1←→ {Prime ideals p of A such that p ∩ S ̸= ∅}

given by the mutually inverse maps q 7→ qc and p 7→ pe.

Proof. If q is prime, then so is qc. If s ∈ qc ∩ S then (1) = (qc)e = q, so qc ∩ S = ∅.
If p is prime with p ∩ S = ∅, then (pe)c = p and pe ̸= (1). If (a/s)(b/t) ∈ pe, then

ab/1 ∈ pe, so ab ∈ (pe)c = p. Hence a/s ∈ pe or b/t ∈ pe. So pe is prime.

Corollary 3.6. Let p ⊆ A be a prime ideal and f ∈ A an element. Then there are two
order-preserving one-to-one correspondences

{Prime ideals of Ap}
1:1←→ {Prime ideals q of A such that q ⊆ p};

{Prime ideals of Af}
1:1←→ {Prime ideals q of A such that f ̸∈ q}.

In particular, Ap is a local ring with maximal ideal pAp.

Localization of modules

Let A be a ring, M an A-module, S a multiplicative subset, and f : A→ T a localization
of A at S. A localization of M along f is a T -module P together with an A-module
homomorphism g : M → P such that

• For all y ∈ P there exist x ∈M, s ∈ S such that y = f(s)−1g(x);
• For all x ∈ ker(g) there exists s ∈ S such that sx = 0.

Construction 3.7. We construct a localization of M along f : A → S−1A, the module
of fractions S−1M .
The construction is analogous to the one for S−1A, so that S−1M is identified with

the set of fractions {x/s | x ∈M, s ∈ S}/∼, where
x

s
=

y

t
if and only if utx = usy for some u ∈ S.

Addition and scalar multiplication are defined analogously as in S−1A, and the struc-
ture morphism g : M → S−1M is defined by g(x) = x/1.

As one can check, S−1M is a localization of M along f .

Proposition 3.8. Let S ⊆ A be a multiplicative subset, f : A→ S−1A the corresponding
localization, N an S−1A-module, and g : M → N an A-module homomorphism. There
exists a unique S−1A-module homomorphism h : S−1M → N such that g = h ◦ f . If
additionally g is a localization of M along f , then h is an isomorphism.
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Proof. Since (s/1)(x/s) = x/1, we must take h(x/s) := (1/s)g(x). As in the analo-
gous statement for S−1A, this is well-defined and an isomorphism if and only if g is a
localization along f .

Proposition 3.9. We have S−1M ≃ S−1A⊗A M as S−1A-modules.

Proof. We show that S−1M satisfies the universal property of S−1A ⊗A M . First, we
have an A-bilinear map σ : S−1A ×M → S−1M where σ(a/s, x) := ax/s. Next, let
τ : S−1A ×M → N be A-bilinear. We show that there exists a unique A-linear map
f : S−1M → N with f ◦ σ = τ . We are forced to take f(x/s) := τ(1/s, x), which is
well-defined since if x/s = y/t then utx = usy for some u ∈ S, thus

f(x/s) = τ(ut/uts, x) = τ(1/uts, utx) = τ(1/uts, usy) = τ(us/uts, y) = f(y/t).

Since τ is A-bilinear, f is A-linear.

Remark. Let M be an A-module and f : A→ T any localization. Then we can construct
a localization of M along f , namely the T -module MT = T ⊗A M . To see that this is a
localization, consider MT as an S−1A-module using the unique isomorphism S−1A

∼−→ T .
Then MT ≃ S−1A⊗A M ≃ S−1M as S−1M -modules. Thus MT is a localization along
A→ S−1A, so it is also a localization along f , using the unique isomorphism T

∼−→ S−1A.

Examples 3.10. The module analogues of Ap and Af when S = A \ p or {fn}n≥0 are
denoted by Mp and Mf , respectively.

If f : M → N is an A-module homomorphism, then we have an S−1A-module ho-
momorphism S−1f : S−1M → S−1N defined by S−1f(x/s) = f(x)/s. The assignment
f 7→ S−1f is again a functor, i.e. compatible with identities and composition.
A sequence of A-modules and A-module homomorphisms of the form

· · · →Mi−1
fi−→Mi

fi+1−−−→Mi+1 → · · ·

is exact if ker(fi+1) = im(fi) for all i. A short exact sequence is an exact sequence

0→M ′ f−→M
g−→M ′′ → 0.

It says that f is injective, g surjective, and that M ′′ ≃M/M ′ via f and g.

Proposition 3.11. The functor S−1 is exact, i.e. it preserves exact sequences.

Proof. It suffices to check that if M ′ f−→M
g−→M ′′ is exact, then the induced sequence

S−1M ′ S−1f−−−→ S−1M
S−1g−−−→ S−1M ′′

is exact. We have ker(g) = im(f) and have to show ker(S−1g) = im(S−1f).
For ‘⊇’, note that g(f(x))/s = 0 for all x ∈M ′.
For ‘⊆’, let g(y)/s = 0 for some y ∈ M, s ∈ S. Then g(uy) = ug(y) = 0 for some

u ∈ S. Thus uy = f(x) for some x ∈M ′, so f(x)/us = y/s. Hence y/s ∈ im(S−1f).
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Corollary 3.12. (1) If f : M → N is injective then so is S−1f : S−1M → S−1N .
(2) If f is surjective then so is S−1f .
(3) If N ⊆M is a submodule, then S−1(M/N) ≃ S−1M/S−1N as A-modules.

Proof. Apply Proposition 3.11 to the exact sequences 0 → M → N , M → N → 0, and
0→ N →M →M/N → 0, respectively.

Proposition 3.13. Let M,N be A-modules. Then

S−1M ⊗S−1A S−1N ≃ S−1(M ⊗A N)

as S−1A-modules via x/s⊗ y/t 7→ (x⊗ y)/st.

Proof. Follow the isomorphisms

S−1(M ⊗A N) ≃ S−1A⊗A (M ⊗A N)

≃ (S−1A⊗A M)⊗A N

≃ (S−1A⊗A M)⊗S−1A (S−1A⊗A N)

≃ S−1M ⊗S−1A S−1N.

Corollary 3.14. Let p ⊆ A be a prime ideal. Then

Mp ⊗Ap Np ≃ (M ⊗A N)p

as Ap-modules.

Local properties

Proposition 3.15. Let M be an A-module. The following are equivalent:
(1) M = 0;
(2) Mp = 0 for all prime ideals p ⊆ A;
(3) Mm = 0 for all maximal ideals m ⊆ A.

Proof. The only nontrivial part is ‘(3)⇒ (1)’. Let x ∈M \ {0}. Then ann(x) ⊊ A. Let
m ⊇ ann(x) be a maximal ideal. Then x/1 ̸= 0 in Mm since ann(x) ⊆ A \ (A \m).

Proposition 3.16. Let f : M → N be an A-module homomorphism. The following are
equivalent:
(1) f is injective (resp. surjective);
(2) fp is injective (resp. surjective) for all prime ideals p ⊆ A;
(3) fm is injective (resp. surjective) for all maximal ideals m ⊆ A.

Proof. For all prime ideals p we have ker(f)p ≃ ker(fp) and coker(f)p ≃ coker(fp)
because S−1 is exact. The statement now follows from Prop. 3.15.

Exercise 5. (1) Let A be a ring. Show that the set of units S := A× is a multiplicative
subset and that the structure map A→ S−1A is an isomorphism.
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(2) Let A be a ring and S, T ⊆ A multiplicative subsets such that S ⊆ T . Show that
there exists a unique ring homomorphism f : S−1A→ T−1A that commutes with
the structure maps. That is, if s : A→ S−1A and t : A→ T−1A are the structure
maps, then f ◦ s = t.

(3) Now let A be an integral domain and S, T as in (2), where additionally 0 ̸∈ T .
Show that the homomorphism f from (2) is injective. Deduce that if A is an
integral domain, then the structure morphism A → S−1A is injective and S−1A
can be regarded as a subring of Frac(A).

(4) Let A = K[t1, . . . , tn], f ∈ A, and x ∈ Kn. Show that⋃
g∈A\mx

Ag = Amx

as subrings of Frac(A), and that if fk = ag for some a, g ∈ A (k ≥ 0) then Ag ⊆ Af .
(5) Let A be a ring, f ∈ A, and S := {fk}k≥0. Show that

Af ≃ A[t]/(tf − 1).

Exercise 6. Recall that if f : A→ B is a ring homomorphism and a ⊆ A, b ⊆ B ideals,
then bc is the ideal f−1(b) and ae is the ideal generated by the set f(a) ⊆ B.
(1) Let A be a ring and M a finitely-generated A-module. Let p ⊆ A be a prime ideal.

Show that Mp = 0 if and only if there exists f ∈ A \ p such that Mf = 0.
(2) Let A be a ring and S ⊆ A a multiplicative subset. Show that nil(S−1A) = nil(A)e,

where the extension is taken with respect to the structure map A→ S−1A.
(3) Let A be a ring. We call A reduced if nil(A) = 0. Show that A is reduced if and

only if Ap is reduced for every prime ideal p ⊆ A.
(4) Let A be a ring and p′, p ⊆ A prime ideals such that p′ ⊆ p. Find a ring B and a

ring homomorphism f : A→ B such that q 7→ qc gives a bijection

{q ⊆ B | q prime} 1:1−−→ {q′ ⊆ A | q′ prime, p′ ⊆ q′ ⊆ p}.

(5) Let f : M → N be an A-module homomorphism and S ⊆ A a multiplicative
subset. Show that ker(S−1f) ≃ S−1 ker(f) and coker(S−1f) ≃ S−1 coker(f).

In particular, ker(fp) ≃ ker(f)p and coker(fp) ≃ coker(f)p for every prime ideal p ⊆ A.

4 Primary Decompositions and Noetherian Rings

Primary decompositions generalize decomposition theorems in number theory and alge-
braic geometry. Over A = Z, every element a ∈ Z can be uniquely written a product of
prime powers pi11 · · · pimm , and these are simpler objects than a because they only have one
prime factor. Over A = K[t1, . . . , tn], every variety V (a) ⊆ Kn over a field K decom-
poses uniquely as a union V1 ∪ · · · ∪ Vm of irreducible varieties, i.e. varieties that cannot
be decomposed further in this way. These are both examples of decompositions of the
form a = q1∩· · ·∩qm, where the ideals qi are primary. In general, such a decomposition
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is not unique, but some features of it are, and this recovers the uniqueness statements
of the previous two examples.
In 1921, Emmy Noether showed that the existence of primary decompositions is always

guaranteed if the ambient ring satisfies a certain finiteness property, which is now called
Noetherian in her honor. Furthermore, David Hilbert showed in 1890 that the class of
Noetherian rings includes all polynomial rings K[t1, . . . , tn] over a field K, providing
thus the first important link between commutative algebra and algebraic geometry.
When the field K is algebraically closed, the second important link was given again

by Hilbert through his Nullstellensatz in 1893, which in particular provides a one-to-one
correspondence between the varieties in Kn and the radical ideals of K[t1, . . . , tn].

∗ ∗ ∗

Lemma 4.1. Let f : A→ B be a ring homomorphism, a, b, ai ⊆ B ideals (i ∈ I). Then
(1) r(a)c = r(ac).
(2) r(a) = (1) if and only if a = (1).
(3) r(a ∩ b) = r(a) ∩ r(b).
(4) r is order-preserving.
(5)

⋂
i(ai : a) = (

⋂
i ai : a).

(6) (a ∩ b)c = ac ∩ bc.

Proof. All of these follow immediately from the definitions.

Lemma 4.2. Let S ⊆ A be a multiplicative subset and a, b ⊆ A ideals. Then for
A→ S−1A:
(1) r(ae) = r(a)e.
(2) (a ∩ b)e = ae ∩ be.

Proof. (1) “⊆” is clear. For “⊇”, let (x/s)k = x′/s′ where x′ ∈ a. Then there exists
u ∈ S with us′xk = uskx′ ∈ a, so xk/1 ∈ ae, thus x/s ∈ r(ae).

(2) “⊆” is clear. For “⊇”, let x/s = x′/s′ where x ∈ a and x′ ∈ b. Then there exists
u ∈ S with us′x = usx′ ∈ b, so x/1 ∈ be, thus x/s ∈ be.

Also recall some propositions we have already proven:

Proposition 1.12. Let p1, . . . , pn be prime ideals, let a be an ideal with a ⊆
⋃n

i=1 pi.
Then a ⊆ pi for some i.

Proposition 1.13. Let a1, . . . , an be ideals and let p be a prime ideal with p ⊇
⋂n

i=1 ai.
Then p ⊇ ai for some i. If p =

⋂n
i=1 ai, then p = ai for some i.

Let A be a ring, q, p ⊆ A ideals. Then q is p-primary if
• q ̸= (1);
• r(q) = p;
• if xy ∈ q then x ∈ q or y ∈ p.

Proposition 4.3. Let q, p ⊆ A be ideals. If q is p-primary, then p is prime.
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Proof. We have p ̸= (1) since q ̸= (1). If xy ∈ p then xkyk ∈ q for some k ≥ 0, so either
x ∈ p or ykk

′ ∈ q for some k′ ≥ 0, which implies y ∈ p.

Proposition 4.4. Let q ⊆ A be an ideal and m = r(q) maximal. Then q is m-primary.

Proof. We have q ⊆ m ̸= (1). Now let xy ∈ q. If y ̸∈ m then there exists z ∈ A such
that zy ≡ 1 (mod m). But then (zy − 1)k ≡ 0 (mod q), so

0 ≡ x(zy − 1)k ≡ x (mod q).

Lemma 4.5. If q1, . . . , qn are p-primary, then so is q :=
⋂

i qi.

Proof. We have q ̸= (1) and r(q) = p. Now let xy ∈ q and x ̸∈ q. Then x ̸∈ qi for some
i, but then y ∈ p since qi is p-primary.

Lemma 4.6. Let q be p-primary, x ∈ A. Then
(1) If x ∈ q then (q : x) = (1).
(2) If x ̸∈ q then (q : x) is p-primary.
(3) If x ̸∈ p then (q : x) = q.

Proof. (1) 1x ∈ q.
(2) If y ∈ (q : x) then y ∈ p, so q ⊆ (q : x) ⊆ p. Applying r we get p ⊆ r(q : x) ⊆ p,

so rad(q : x) = p. Now let yz ∈ (q : x) and suppose z ̸∈ p. Since xyz ∈ q we have
xy ∈ q, so y ∈ (q : x).

(3) If y ∈ (q : x) then xy ∈ q, so y ∈ q.

Let a ⊆ A be an ideal. A primary decomposition of a is a relation of the form

a =
n⋂

i=1

qi, qi is pi-primary for all i. (∗)

The decomposition (∗) is minimal if all the pi are distinct and qi ⊉
⋃

j ̸=i qj for
all i. Every primary decomposition can be turned into a minimal one by collecting or
eliminating terms. Thus we will always assume that (∗) is minimal when we refer to it.

Theorem 4.7 (Uniqueness 1). Let a ⊆ A be an ideal and (∗) be a minimal primary de-
composition. If p ⊆ A is prime, then p = pi for some i if and only if p = r(a : x) for some
x ∈ A. In particular, the set {pi}ni=1 is independent of the choice of decomposition (∗).

Proof. First note that for all x ∈ A,

r(a : x) = r

n⋂
j=1

(qj : x) = r
⋂
x ̸∈qj

(qj : x) =
⋂
x ̸∈qj

r(qj : x).

Now for “⇒”, let p = pi. Since (∗) is minimal, there exists x ∈
⋂

j ̸=i qj \ qi. For this x,
we have r(a : x) = r(qi : x) = p.
For “⇐”, let p = r(a : x) for some x ∈ A. Then since p =

⋂
x ̸∈qj r(qj : x), there exists

an i such that p = r(qi : x) = pi.
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The set Ass(a) := {pi}ni=1 is the set of primes associated to a. Inclusion-minimal ele-
ments of Ass(a) are called isolated primes and the other elements embedded primes. The
terms qi of a primary decomposition (∗) are then called isolated or embedded components
according to their radicals pi.

Proposition 4.8. Let a ⊆ A be an ideal and (∗) be a minimal primary decomposition.
If p ⊇ a is prime, then there exists an isolated prime pi ∈ Ass(a) such that p ⊇ pi.

Proof. We have p ⊇
⋂

j pj , so p ⊇ pi for some pi, which can be chosen minimal.

Proposition 4.9. Let S ⊆ A be a multiplicatively closed subset and q a p-primary ideal.
Then with respect to A→ S−1A:
(1) If S ∩ p ̸= ∅ then qe = (1).
(2) If S ∩ p = ∅ then qe is pe-primary and qec = q.

Proof. (1) If s ∈ S ∩ p then sk ∈ S ∩ q for some k, so 1 ∈ qe.
(2) We have qec = {x ∈ A | sx ∈ q for some s ∈ S} = q since s ̸∈ p. Furthermore,

r(qe) = r(q)e = pe. If (a/s)(b/t) ∈ qe then ab/1 ∈ qec = q, so qe is pe-primary.

Proposition 4.10. Let S ⊆ A be multiplicatively closed, a ⊆ A an ideal, and (∗) a
minimal primary decomposition. Then with respect to A→ S−1A:

ae =
⋂

S∩pi=∅

qei and aec =
⋂

S∩pi=∅

qi

are both minimal primary decompositions.

Proof. We have ae =
⋂n

i=1 q
e
i =

⋂
S∩pi=∅ q

e
i and the qei in that intersection are pei -primary.

Since (−)e is order-preserving, this is a minimal primary decomposition of ae. Finally,
we get aec =

⋂
S∩pi=∅ q

ec
i =

⋂
S∪pi=∅ qi and this is a minimal primary decomposition.

A set Σ ⊆ Ass(a) is isolated if for all p ∈ Σ and p′ ∈ Ass(a), p′ ⊆ p implies p′ ∈ Σ.

Lemma 4.11. Let Σ ⊆ Ass(a) be isolated and S = A\
⋃

p∈Σ p. Then S is multiplicatively
closed and for all p′ ∈ Ass(a),
(1) If p′ ∈ Σ then p′ ∩ S = ∅.
(2) If p′ ̸∈ Σ then p′ ∩ S ̸= ∅.

Proof. If s, t ̸∈ p for all p ∈ Σ then neither is st. Thus S is multiplicatively closed. Now,
(1) Holds by definition.
(2) If p′ ̸∈ Σ then p′ ⊈ p for all p ∈ Σ because Σ is isolated, so p′ ⊈

⋃
p∈Σ p by a

previous proposition, hence p′ ∩ S ̸= ∅.

Theorem 4.12 (Uniqueness 2). Let a ⊆ A be an ideal, (∗) be a minimal primary decom-
position and Σ ⊆ Ass(a) isolated. Then the ideal

⋂
pi∈Σ qi is independent of the choice

of decomposition (∗). In particular, the isolated primary components of a depend only
on a, not on (∗).
Proof. Let S = A\

⋃
pi∈Σ pi. By Theorem 4.7, S does not depend on (∗), and thus neither

does aec (w.r.t. A → S−1A). But aec =
⋂

pi∈Σ qi by Proposition 4.10 and Lemma 4.11.
Finally, {pi} is an isolated set if and only if qi is an isolated component.
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Noetherian rings

A ring A is Noetherian if for all sequences (ai)i∈N of ideals ai ⊆ A with

a1 ⊆ a2 ⊆ · · · ⊆ A,

there exists n ∈ N such that an = am for all m ≥ n. We say that in Noetherian rings,
all ascending chains are stationary.

Proposition 4.13. Let A be a ring. The following are equivalent:
(1) A Noetherian.
(2) Every set of ideals in A has a ⊆-maximal element.
(3) Every ideal in A is finitely generated.

Proof. (1) ⇒ (2): If a set of ideals does not have a maximal element, then we can
inductively construct a non-stationary ascending chain.

(2) ⇒ (3): Let a be an ideal and consider the set of ideals of the form
∑n

i=1(ai) for
some n ∈ N and ai ∈ a. A maximal element of this set must equal a.

(3)⇒ (1): Given an ascending chain a1 ⊆ a2 ⊆ · · · , the union a :=
⋃

i∈N ai is an ideal.
But then there must be an an that contains all the generators of a.

Example 4.14. Principal ideal domains are Noetherian. In particular the ring Z is
Noetherian, as well as every field K.

Proposition 4.15. Let A be a ring, a ⊆ A an ideal. If A is Noetherian, then so is A/a.

Proof. Ascending chains in A/a correspond to ascending chains in A containing a.

Proposition 4.16. Let A be Noetherian and let N ⊆ M be A-modules. If M is finitely
generated then so is N .

Proof. Let M =
∑n

i=1Axi for some xi ∈ M . Use induction on n. If n = 1 then
M ≃ A/ann(x1) and the submodules of M correspond to the ideals of A/ann(x1). If
n > 1, let N ′′ := N/(N ∩ Axn). This is a submodule of M/Axn, which is generated by
n− 1 elements. Thus N ′′ is finitely generated. Similarly, N ′ := N ∩Axn is a submodule
of Axn, thus finitely generated. Since N = N ′ + p−1(N ′′) and p : N → N ′′ is surjective,
N is also finitely generated.

Remark. The final part of the above proof can be adapted to show the following: if N ′

and N ′′ are finitely generated modules over any ring A and 0→ N ′ → N → N ′′ → 0 is
an exact sequence, then N is finitely generated.

Proposition 4.17. If A is Noetherian and S ⊆ A multiplicative then S−1A is Noetherian.

Proof. If b ⊆ S−1A is an ideal then bc is finitely generated, hence so is bce = b.

Theorem 4.18 (Hilbert’s Basis Theorem). If A is Noetherian, then so is A[t].
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Proof. Let a ⊆ A[t] be an ideal. For n ∈ N, we define recursively elements fn ∈ a, ideals
an :=

∑n
i=1(fi) and numbers dn := deg(fn), as follows. First let f1 := 0. Then if n > 1,

let fn be any element of minimal degree in a \ an−1. If at some point a = an then a is
finitely generated and we are done. If not, we want to find a contradiction.
Note that di−1 ≤ di for all i > 1, since fi ∈ a \ an−2.
For i ∈ N, write fi = ait

di + (lower terms) and let a :=
∑

i∈N(ai) ⊆ A. Then there
exists n ∈ N such that a =

∑n
i=1(ai). In particular, there exist ui ∈ A such that

an+1 =
∑n

i=1 uiai. Let g :=
∑n

i=1 uifit
dn+1−di . Then g ∈ an and fn+1 ∈ a \ an, so

fn+1 − g ∈ a \ an. But

g =
( n∑
i=1

uiai
)
tdn+1 + (lower terms) = an+1t

dn+1 + (lower terms),

so deg(fn+1 − g) < dn+1 = deg(fn+1), contradiction.

Corollary 4.19. If A is Noetherian then so is A[t1, . . . , tn]. In particular, if K is a field
then K[t1, . . . , tn] is Noetherian, thus every finitely-generated K-algebra is Noetherian,
as well as every finitely generated Z-algebra.

Primary decompositions in Noetherian rings

An ideal a ⊆ A is irreducible if for all ideals b, c ⊆ A, if a = b ∩ c then a = b or a = c.

Lemma 4.20. If A is Noetherian, then every ideal a ⊆ A is the intersection of finitely
many irreducible ideals.

Proof. Suppose not. Then the set Σ of ideals that aren’t such an intersection has a
maximal element a. In particular a is reducible, so there exist b ⊋ a and c ⊋ a such that
a = b ∩ c. But then b, c ̸∈ Σ, so a ̸∈ Σ, contradiction.

Lemma 4.21. Let A be a Noetherian ring and q ⊊ A irreducible. Then q is primary.

Proof. Since q is irreducible, (0) is irreducible in A/q. Now let x, y ∈ A/q with xy = 0,
x ̸= 0. We show that y is nilpotent. The ascending chain

(0) ⊆ ann(y) ⊆ ann(y2) ⊆ · · ·

is stationary, so ann(yn) = ann(yn+1) for some n. If z ∈ (yn) then z = gyn for some
g ∈ A/q. If additionally z ∈ (x) then gyn+1 = yz = 0, thus gyn = 0 because g ∈ ann(yn).
Hence we have (0) = (x) ∩ (yn). Since (x) ̸= (0), we must have (yn) = (0).

From these lemmas we immediately deduce the following theorem:

Theorem 4.22 (Noether). Every ideal in a Noetherian ring has a primary decomposition.
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Hilbert’s Nullstellensatz

Lemma 4.23 (Artin–Tate). Let A ⊆ B ⊆ C be rings, where A is Noetherian, C is finitely
generated as an A-algebra, and C is finitely generated as a B-module. Then B is finitely
generated as an A-algebra.

Proof. Let x1, . . . , xm, y1, . . . , yn ∈ C such that C = A[x1, . . . , xm] = By1 + · · · + Byn.
Then for every xi and every product pair yjyk there are equations of the form

xi =
n∑

j=1

bijyj , bij ∈ B,

yjyk =

n∑
ℓ=1

bjkℓyℓ, bjkℓ ∈ B.

Let B′ := A[bij , bjkℓ]i,j,k,ℓ. Then B′y1+ · · ·+B′yn contains all xi, all products xixi′ , and
all other monomials in the xi. Thus C = B′y1 + · · ·+B′yn, so C is a finitely-generated
B′-module. Now B′ is Noetherian (it is a finitely-generated A-algebra) and B′ ⊆ B, thus
the B′-submodule B ⊆ C is a finitely-generated B′-module. Then B is finitely generated
as an A-algebra: if, say, B = B′y′1 + · · ·+B′y′r then B = A[bij , bjkℓ, y

′
α]i,j,k,ℓ,α.

Lemma 4.24. Let K be a field and E the function field K(t1, . . . , tr) for some r ≥ 1.
Then E is not a finitely-generated K-algebra.

Proof. Exercise.

Lemma 4.25 (Zariski). Let K ⊆ L be fields, where L is a finitely-generated K-algebra.
Then L is a finitely-generated K-vector space.

Proof. By “basic field theory” (see supp. material), there exists a field E such that
• K ⊆ E ⊆ L,
• E is isomorphic to the function field K(t1, . . . , tr) for some r ≥ 0, and
• L is a finite-dimensional E-vector space.

Then since K is Noetherian and L finitely generated as a K-algebra and as an E-module,
E is a finitely-generated K-algebra. But this can only happen when r = 0.

Corollary 4.26. Let A be a finitely-generated K-algebra and m ⊆ A a maximal ideal.
Then A/m is a finitely-generated K-vector space. In particular, if K is algebraically
closed then A/m ≃ K.

Proof. We have K ⊆ A/m and A/m is a finitely-generated K-algebra and a field, so it is
finitely-generated as a K-vector space. In particular, if α ∈ A/m then there exists n ∈ N
such that the elements 1, α, . . . , αn are linearly dependent over K. If K is algebraically
closed, this implies α ∈ K, thus A/m = K in this case.
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Theorem 4.27 (Hilbert’s Nullstellensatz). Let A := k[t1, . . . , tn], where k is an alge-
braically closed field, and a ⊆ A an ideal. Let V (a) := {x ∈ kn | g(x) = 0 for all g ∈ a}
and

I(V (a)) := {f ∈ A | f(x) = 0 for all x ∈ V (a)}.

Then I(V (a)) = rad(a).

Proof. If fn ∈ a and x ∈ V (a), then f(x)n = 0, thus f(x) = 0. So rad(a) ⊆ I(V (a)).
Now let B := A/a. Suppose f ̸∈ rad(a) and let f̄ be the image of f in B. Then

Bf ̸= 0, so there exists a maximal ideal m ⊂ Bf . Also, Bf ≃ B[t]/(1 − tf) is a finitely
generated k-algebra, thus so is Bf/m. Since k is algebraically closed we have Bf/m ≃ k
and a ring homomorphism

φ : A→ B → Bf → Bf/m
∼−→ k.

Let x := (φ(t1), . . . , φ(tn)) ∈ kn. For all g ∈ A we have g(x) = φ(g). In particular,
if g ∈ a then g(x) = 0 since g becomes 0 in B, thus x ∈ V (a). But f(x) ̸= 0 since f
becomes a unit in Bf . Hence, f ̸∈ I(V (a)), which concludes the proof.

On this happy note, we conclude our introduction to commutative algebra.

Exercise 7. For this exercise, let A := K[x, y, z] and let a denote the ideal (yz, xz2) ⊆ A.
(1) Show that the ideals (z) and (y, x) are prime and that V (a) = V (z) ∪ V (y, x).
(2) Show that the ideal (y, z2) is primary and find its radical.
(3) Show that a = (z) ∩ (y, x) ∩ (y, z2).
(4) Show that the relation in (3) is a minimal primary decomposition of a.
(5) Determine the set Ass(a) of prime ideals associated to a, together with its partial

order ⊆. Indicate which associated primes are isolated and which are embedded.

Exercise 8. In this exercise, K denotes an arbitrary field. Recall that the variety of an
arbitrary subset E ⊆ K[t1, . . . , tn] is

V (E) := {x ∈ Kn | f(x) = 0 for all f ∈ E}.

(1) Find an ideal a ⊆ K[x, y, z] such that Ass(a) consists of three distinct prime ideals
p1, p2, p3 with p1 ⊂ p2 ⊂ p3.

(2) Let E ⊆ K[t1, . . . , tn] be any subset. Show that there exist f1, . . . , fk ∈ K[t1, . . . , tn]
such that V (E) = V ({f1, . . . , fk}).

(3) Let K be algebraically closed and let a ⊆ K[t1, . . . , tn] be an ideal. Show that
V (a) = ∅ implies a = (1). Deduce that every maximal ideal m ⊆ K[t1, . . . , tn] is of
the form mx for some x ∈ Kn. (Or, if you prefer, prove the second statement and
deduce the first from the second).

(4) Find an ideal a ⊆ R[t] such that V (a) = ∅ but a ̸= (1). Compute V (ae), where the
extension is taken with respect to the inclusion R[t]→ C[t].

(5) Let r ≥ 1, E := K(t1, . . . , tr), and α1, . . . , αm ∈ E. Show that there exists α ∈ E
such that α ̸∈ K[α1, . . . , αm]. Deduce that E is not a finitely-generated K-algebra.
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Supplementary Material

Homomorphisms from a polynomial ring

Let A be a ring, P = A[t1, . . . , tn] the polynomial ring in n variables over A. We have
• A ring homomorphism u : A→ P (the obvious inclusion)
• A choice of n elements of P (the ti)

with the following property:

For all rings R, ring homomorphisms v : A→ R, and all choices of n elements
r1, . . . , rn of R, there exists a unique ring homomorphism f : P → R such
that f ◦ u = v and f(ti) = ri for all i.

This is called the ‘universal property’ of the polynomial ring in n variables over A, for
the following reason. If any other ring P ′ with a ring homomorphism u′ : A→ P and a
choice of n elements t′i ∈ P ′ satisfies the property above (with P ′, u′ and t′i instead of P ,
u, and ti), then there exists a unique ring isomorphism h : P

∼−→ P ′ such that h ◦ u = u′

and h(ti) = t′i for all i.
In other words, the above property characterizes the polynomial ring P up to unique

isomorphism. The reason for this uniqueness is purely formal: given such a P ′, use the
property of P to get a homomorphism P → P ′ and the property of P ′ to get a homo-
morphism P ′ → P . From the uniqueness clause of the property of P , the composition
P → P ′ → P must be the identity. From the uniqueness clause of the property of P ′,
the composition P ′ → P → P ′ must be the identity. Thus the homomorphisms we found
are mutually inverse, so isomorphisms.

As an example of how to use the universal property, let k be a field and suppose we
want to define a ring homomorphism from k[t1, . . . , tn] to some ring R. Then for this we
just need to specify n elements of R and a ring homomorphism k → R. In most cases, it
will be clear what this homomorphism should be. For instance, if R = k then take the
identity, and if R = Ax from the exercises, we could map λ ∈ k to λ/1.

It is now time to prove the universal property for P = A[t1, . . . , tn].

Proof. For an index tuple I = (i1, . . . , in) where ij ∈ Z≥0, and a choice of n elements
r1, . . . , rn in an arbitrary ring R, we write rI for the product ri11 · · · rinn . Thus every
element of P can be written as a sum

∑
I u(aI)t

I , where I ranges over all possible index
tuples, aI ∈ A, and all but a finite number of the u(aI) are zero. Now let v : A → R
and r1, . . . , rn. If a ring homomorphism f : P → R is supposed to satisfy f ◦ u = v and
f(ti) = ri, then setting for all p =

∑
I u(aI)t

I ∈ P

f(p) =
∑
I

f(u(aI))f(t
I) =

∑
I

v(aI)r
I

is our only choice. We see that by our definition, f ◦ u = v and f(ti) = ri. It remains to
show that f is a homomorphism, but this I will leave to the reader. It follows from the
fact that addition and multiplication of elements of R of the form

∑
I bIr

I , where bI ∈ R,
mirrors precisely the addition and multiplication defined in the polynomial ring.
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On that last point, it may be good to recall the addition and multiplication in the
polynomial ring: we have∑

I

aIt
I +

∑
I

bIt
I =

∑
I

(aI + bI)t
I ,(∑

I

aIt
I

)(∑
I

bIt
I

)
=

∑
I

( ∑
J+K=I

aJbK

)
tI ,

where the addition of index tuples is defined componentwise:

(j1, . . . , jn) + (k1, . . . , kn) = (j1 + k1, . . . , jn + kn).

“Basic field theory.”

This section is to explain one step of the proof of Zariski’s Lemma 4.25. Field theory
studies field extensions, which are inclusions of the form K ⊆ L, where K and L are
fields. Such a field extension is often written L/K and L is said to be a field over K.

Given an extension L/K, an element α ∈ L is algebraic if there exists a polynomial
f ∈ K[t] such that f(α) = 0.
If Σ ⊆ L is any set of elements, then K(Σ) denotes the smallest subfield of L that

contains Σ. This is well-defined since the intersection of two subfields is again a field. In
particular, if α1, . . . , αn ∈ L then K(α1, . . . , αn) is the smallest subfield containing all
the αi. Note already that K(α1, . . . , αn−1)(αn) = K(α1, . . . , αn).
The field extension L/K is said to be
• algebraic if all elements α ∈ L are algebraic,
• finitely-generated if there exist α1, . . . , αn ∈ L such that L = K(α1, . . . , αn),
• finite if L is a finite-dimensional K-vector space.

Note that the extension L/K being finitely-generated is a very different condition from
the field L being a finitely-generated K-algebra. The former says that every element of
L can be written as a rational expression in the αi with coefficient in K. The latter,
that every element can be expressed as a polynomial in the αi.

Being finite is a transitive condition: if K ⊆ E ⊆ L are fields, E/K is finite, and L/E
is finite, then L/K is finite. Indeed, if (xi) is a K-basis of E and (yj) is an E-basis of
L, then (xiyj) is a K-basis of L.
The first important fact about field extensions is the following: Let L/K be a field

extension. The following are equivalent:
(1) L/K is finite.
(2) L/K is finitely-generated and algebraic.
(3) L = K(α1, . . . , αn) and the αi ∈ L are algebraic.

Proof. (1)⇒ (2): Let L/K be finite. Then it is finitely generated. Now let α ∈ L. Then
there exists n ∈ N such that the 1, α, . . . , αn are linearly dependent over K. This gives
a polynomial f ∈ K[t] of degree n such that f(α) = 0. Thus α is algebraic.

(2) ⇒ (3): Clear.
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(3)⇒ (1): Let L = K(α1, . . . , αn) with the αi ∈ L algebraic. We proceed by induction
on n. If n = 1 and L = K(α), let φ := K[t]→ L be the ring homomorphism defined by
t 7→ α. Then K[t]/ ker(φ) ≃ K[α] ⊆ L is an integral domain, so ker(φ) is prime. Since α
is algebraic, ker(φ) is nonzero. Since K[t] is a principal ideal domain, ker(φ) is maximal.
Thus K[α] is a field containing α, so L = K[α], and hence L is a finite-dimensional
K-vector space, again since ker(φ) ̸= 0.
Now let n > 1 and E := K(α1, . . . , αn−1) Then K ⊆ E ⊆ L. By the induction

assumption, E/K is finite and by the n = 1 case, L/E is finite. Thus L/K is finite.

Now we can prove a statement that we need for Zariski’s lemma: If L/K is a finitely-
generated field extension, then there exists a field K ⊆ E ⊆ L such that E is isomorphic
to the function field K(t1, . . . , tr) for some r ≥ 0 and L/E is finite.

Proof. Write L = K(α1, . . . , αn). We construct E step by step:
(1) Start with E := K.
(2) For i = 1, . . . , n: if αi is not algebraic over E, then replace E by E(αi).
(3) Rename the αi so that E = K(α1, . . . , αr).

At the end of this algorithm, we have L = E(αr+1, . . . , αr) where αr+1, . . . , αn ̸∈ E, and
by our construction the αr+1, . . . , αn are algebraic over E. Thus L is algebraic over E.

Moreover, E ≃ K(t1, . . . , tr), which we show by proving thatK[α1, . . . , αr] ≃ K[t1, . . . , tr].
We have a surjective homomorphism φ : K[t1, . . . , tr] → K[α1, . . . , αr], and if f is a
nonzero element of ker(φ), then f contains some variable ti. Among these possible ti,
we can choose one such that αi was added last in the algorithm, say for instance i = r.
But then f shows that αr is algebraic over K(α1, . . . , αr−1), contradiction.

Zariski’s lemma’s assumption is that L is even finitely generated as a K-algebra, so in
particular L/K is a finitely generated as a field extension. Again, the former condition is
much stronger: by Zariski’s lemma itself, it implies for instance that we can take E = K
in the former statement.
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