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ABSTRACT. Markov combination is an operation that takes two statistical
models and produces a third whose marginal distributions include those of the
original models. Building upon and extending existing work in the Gaussian
case, we develop Markov combinations for categorical variables and their statis-
tical models. We present several variants of this operation, both algorithmically
and from a sampling perspective, and discuss relevant examples and theoretical
properties. We describe Markov combinations for special models such as regular
exponential families, discrete copulas, and staged trees. Finally, we offer results
about model invariance and the maximum likelihood estimation of Markov
combinations.

1. INTRODUCTION

This paper describes a method for combining two statistical models to obtain a
third, a concept with both theoretical and practical implications. From a theoretical
point of view, such an operation can be analysed for its algebraic properties such as
associativity, commutativity, and unit elements. In addition, statistical properties
of the original models may transfer to their combination. Known models may be
representable as a sequence of combinations of simpler models, and the combination
of models of the same type may result in a model of that type.

From a data analysis perspective, this model-based approach offers an alternative
to traditional methods for merging evidence from different sources such as meta-
analysis, data fusion and data integration. Combining two statistical models for
different datasets produces a model for the combined dataset in a way that conforms
to the original models, as detailed in Section 2. There it is shown that sampling from
the combined model entails first sampling from one model and then from the second
model within the same meta-category of the first sample. Different combination
variants provide variations of this basic structure.

The operation, known as Markov combination, acts on probability density func-
tions. It was first introduced in [4] to join two graphical models along a common
clique and later generalised in [14] and [15] for a finite set of Gaussian random
variables. Markov combinations also form the basis for the notion of Markov meld-
ing [10]. In this paper the concept is focused on the discrete categorical case, to
allow for the combination of discrete models.

The basic setup involves a discrete random variable defined on a finite set I,
which represents the set of possible values, categories, or levels that the variable
can take. The case of multiple random variables can be reduced to this form by
mapping the level sets to a suitable I. The order of the elements in I is not relevant
for our work. The overall setup is similar to that used in [11], [16], and [5].
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The paper is structured as follows.

Section 2 defines the operation of meta-categorisation on a finite set I, the basic
operation of Markov combination of statistical models, and several variants of
the latter. These operations are motivated and interpreted in terms of sampling.
Section 3 discusses examples and special cases and shows that discrete Markov
combinations generalise both independent Cartesian products and the Markov
combinations defined in [4]. Section 4 examines the theoretical properties of Markov
combinations, focusing on associativity and the formulation of mixture models as
chains of combinations and marginals.

Section 5 describes Markov combinations for specific classes of models, namely
discrete copulas [12], regular exponential families (saturated models), and staged
trees [8]. Section 6 presents theoretical results, including model invariance and
maximum likelihood estimation for Markov combinations of saturated models. Sec-
tion 7 provides algorithms for computing density functions and sampling. Section 8
concludes the paper with a discussion of future directions.

2. DEFINITIONS

When analysing categorical data, it is often useful to aggregate, collapse, or
recode groups of data categories into broader categories. After introducing a
formalism for this operation of meta-categorisation, we use it to define Markov
combinations of discrete statistical models for two separate categorical variables
using appropriately-chosen metacategories.

2.1. Category mappings and aggregates. A meta-categorisation is the grouping
of categories from a finite set I into broader categories M, called metacategories.
This can be formalised in two ways: as a partition of I or as a surjective map
p: I — M. The second approach, which we call category mapping, is preferable
because it explicitly names the metacategories through the set M.

Definition 1. Let I be a finite set. A category mapping of I is a finite set M together
with a surjective function p : I — M. The corresponding category aggregation is
the partition on I induced by p. Elements of M are called metacategories. For a
metacategory k € M, the aggregate category Iy is the subset {i € I | p(i) = k}.

The categories often index count data, relative frequencies, probability distri-
butions, and statistical models of discrete random variables. In each case, we can
aggregate data by summing over the elements ¢ € I mapped to each particular
metacategory. Because of this broad applicability, we shall give the next definition
for I-indexed vectors of any given field.

Definition 2. Let K be a field, p : I — M a category mapping and f = (f;)icr € K'
an I-indexed vector with entries in K. The aggregate of f with respect to p is the
vector fyr € K™ whose k-th component is given by

fae = Z fi for all k € M.
i€l
Example 3 (Parametric probability density functions). A discrete parametric statis-
tical model over the set of categories I is given by an I-indexed sequence of functions
fi 1 © = Rxq such that ), f; is the constant function 1. Each f; represents the
probability for a random sample to fall into the category i, parametrised by 6 € O.
To apply Definition 2 to statistical models we take K to be the field of ratios of
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functions ® — R. Then, the aggregate fy; of a parametric statistical model f is a
parametric statistical model on M whose components are linear combinations of
coordinates of f. Different families of statistical models can be defined by restricting
K. For example, in Algebraic Statistics, K is often the field of (polynomial) rational
functions in © [16, 6].

Example 4 (Marginal distributions). Marginalisation is a special type of aggregate.
Indeed, if A and B are sets of categories for discrete random variables X and Y, then
I = A x B is the set of categories for the random vector (X,Y’). Let M = A and
let p: I — M be the projection on the first factor p(a,b) = a. If f is a probability
density on I, then its aggregate with respect to p is the usual marginal density
function fx of f with respect to the random variable X. Indeed, for a € A we have
I, ={(a,b) | b € B} and

fM,a = Zfl = Zf(aab> = fX,a~

i€l, beB

2.2. Mapping products. When combining two categorical variables X and Y, we
typically consider the Cartesian product I x J as the set of possible joint categories.
However, if I and J have a shared Cartesian structure, such as I = Iy x I; and
J = I1 X Iy, a simpler combined set Iy x I; x Iy may be preferred to Iy x Iy X I1 X I.
To enable such flexibility, we specify a common set of metacategories M for I and J,
and only include pairs (4,j) € I x J where p(i) = ¢(j), where p and ¢ are category
mappings into M.

Definition 5. For finite sets I and J, let p: I — M and ¢ : J — M be category
mappings. The mapping product (or pullback or fiber product) of p and ¢ is the set
Iy J={(0,5) € I x J | p(i) = q(j)}-

Here, we have modeled the mapping product as a subset of the Cartesian product
of I and J. In particular, every distribution on I x,; J can be extended to
I x J by setting the missing values to zero. The mapping product can also be
represented as the disjoint union of Cartesian products over aggregate categories:
I xar J = [Hpen In X Ji, where ] stands for the disjoint union of sets. The
cardinality of the mapping product is ), </ [Ix] - [Jk|. The usual Cartesian product
is a special case of the mapping product where M has only one element and all
categories belong to the same metacategory.

2.3. Markov combinations. Suppose we have two sets of categories I and J with
the same metacategories, a set of samples A labeled by I, and a set of samples B
labeled by J, thus we view A as a multiset of I and B as a multiset of J. We can
construct a combined set of samples by the following procedure: first, sample an
element from A; then, conditional on the metacategory of this sample, draw a sample
from B, i.e. within the same metacategory. Alternatively, we may reverse the order:
first sampling from B, then from A within the same metacategory. This motivates
the following definition, which describes how such data—represented as frequency
distributions over the categories—combine. In both variants, the combined set of
samples is labeled by the mapping product I x s J.

Definition 6. Let K be a field, and let p: I — M and ¢q : J — M be category
mappings. The left Markov combination of two vectors f € KT and g € K7 is the
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vector f xpr g € K1*M7 such that

(f*rm9)ij = for all (4,7) € I xpr J.

Analogously, the right Markov combination of f and g is defined as the vector
farxg € K17 given by (farxg)i = fi 95/90m.q05) for all (i,5) € I xpr J.

Later we will use the fact that fjxg = ¢ *a f. Like aggregates, Markov
combinations can be defined over different fields K, which enables application
at different levels of analysis. For instance, let f = (a;)icr and g = (8;);es be
probability density functions, i.e., a;, 8; € [0,1] with >, a; = 37, 8; = 1. Then
f *ar g defines a density function on I X s J. One can also combine two parametric
statistical models (f;)icr and (g;);es, where f;,g; : © — R>( for all i and j, by
operating within the field of fractions of the ring of real-valued functions on ©. The
result is again a statistical model.

By using the basic operations of left and right Markov combinations of statistical
models, we can define several variants, each characterised by a different interpretation
in terms of sampling. To this end, we adapt the core model combinations listed in [4]
and [14] to our setup for discrete models. To formalise this idea, we consider Markov
combinations within the function field K (©), i.e. the field of ratios of functions
© — R. A statistical model is then represented as a vector in K(©)!, i.e., as a
vector of rational functions indexed by I.

Definition 7. Let I and J be finite sets and p: I — M and ¢ : J — M category
mappings. For a field K and a parameter space ©, let K(O) be the field of ratios of
functions © — R.

(1) Two vectors f € K! and g € K are said to be consistent if their aggregates
w.r.t. p and g coincide, i.e., if fy; = gps- In this case, the left and right
Markov combinations coincide and the Markov combination of f and g is
defined as fxg= f*p 9= fuxg.

(2) Two parametric statistical models f € K(©)! and g € K(©)” are said
to be meta-consistent if for every § € O, the evaluations f(#) and ¢(f)
are consistent. In this case, we define their meta-Markov combination as
the vector fxg € K(0)'*m7 obtained by taking the Markov combination
pointwise in 6.

(3) Let f € K(©)! and g € K(0)7 be parametric models and define the
parameter space ©’ := {(01,02) € © x © | f(61),g(02) consistent}.

(a) The lower Markov combination of f and g is the vector f x g in
K(©")>*m7 defined for all (0;,6,) € © by

(fx9)(01,02) = f(01) % g(6-).

(b) The upper Markov combination of f and g is the vector f x ¢ in
K(© x 0 x {0,1})!*m7 defined for all 0,6, € © by

(f*9)(01,02,0) = f(01) *m g(02),
(f*9)(01,02,1) = f(01) m* g(62).
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(¢) The super Markov combination of f and ¢ is the vector f ® ¢ in
K(©2 x {0,1})1*27 defined for all 6,605,053 € O, (i,5) € I x5 J by

o _ fi(61) . , . gj(93)

(f ® g)%] (917 02’ 93’ 0) fM’p(i) (91) fMﬁU(l) (02) gM’q(J) (93) )
N _ fi(6y) . ~g(63)

(f ©9)i;(01,62,03,1) = 7fM,p(i) (61) 9M.q(5)(02) 791\/1,(;(]')(93)'

Example 8. Let I = {a,b,c}, J = {&, O, 0,8}, M = {1,2}, and define the two
category mappings p and g by

pla) =1 p(b) = ple) =2
(%) =q(0)=q(@)=1  q(&) =2

The two density vectors f = (%, é, %) defined on I and g = (i, i, %, %) defined on
J are consistent w.r.t. the given category mappings, while neither is consistent
with the vector (%, %, 3) defined on I. Similarly, for 6 € [0, 1] the two statistical
models f = (30,0,1 —460) on I and g = (0,0,60,1 — 30) on J are consistent, while
f=1(1-46,20,20) on I and (0,0,0,1 — 30) on J are consistent only for 6 = 1/7.

Note that a) all notions of Markov combination depend on the choice of category
mappings to M which we leave implicit in the terminology, b) the operator x is
commutative, and ¢) one could write upper Markov combinations using only left
Markov combinations since (f ¥ g)(61,02,1) = f(61) am* g(02) = g(02)*pr f(61).

The distinction between left and right Markov combinations reflects the lack
of commutativity of these operations for non-consistent densities. This motivates
the separation into cases indexed by 0 and 1 in Definition 7(3b-3c). From the
meta-Markov combination of two meta-consistent models, the original models can
be recovered by taking aggregates, see Example 15 for more details.

The combinations defined in Definition 7 can be interpreted in terms of sampling
schemes. Let A and B be two multisets of I and J, respectively.

- For the basic Markov combination in Definition 7(1), we can sample from A
and then from B within the same metacategory, or vice versa. This corresponds
to taking the left or the right Markov combination, which coincide if the factor
distributions are consistent.

- For the meta-Markov combination in Definition 7(2), we assume that A and
B are generated by parametric models. Fixing a parameter 6 € ©, we perform
sampling from A and then from B within the same metacategory, or vice versa. If,
for all @, the two distributions obtained by sampling first from A or first from B are
equal, then the models are meta-consistent.

- Definition 7(3) addresses the case of not meta-consistent models. For the lower
Markov combination in Definition 7(3a) the model parameters 67 and 6, may differ
between sampling from A or from B, as long as they yield consistent distributions.
For the upper Markov combination in Definition 7(3b), the binary parameter 0
or 1 determines whether a left or right combination is taken. Here, a change of
parameter 6 between sampling from A and from B is allowed.

- For the super Markov combination in Definition 7(3c), we allow full flexibility:
parameters may vary between all stages, and the choice of left or right combination
is encoded explicitly. We first draw a sample to fix a metacategory, then we sample
from both A and B whithin that metacategory. The fourth parameter decides
whether the metacategory is decided by sampling from A or from B.
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In practical applications, one might wish to restrict the flexibility of parameter
variation across sampling stages. The following definition introduces the notion of
restricted Markov combinations to capture such scenarios.

Definition 9. Let f € K(0)! and g € K(0©)7 be parametric models.
(3’a) The restricted lower Markov combination of f and g is the vector f g in
K(©")!*m7 wwhere © == {0 € © | f(6),g(0) consistent} and
(fx9)(0) = f(8) xg(#) forall § € O
(3'b) The restricted upper Markov combination of f and g is the vector f % g in
K(© x {0,1})1*m7 where
(f*9)(0,0) = f(6) *ar 9(6),
(f*9)(0,1) = f(0)rr+g(0)
for all 6 € ©.

(3’c) The restricted super Markov combination of f and g is the vector f ® g in
K(©2 x {0,1})1*7 where

N _ S0 00
(f ©9)i,j(01,0,0) = T (00 *farp()(02) It (01)

- R0y (o). 90
(f ®9)ij(01.02,1) = Foro ) “9.07) (02) - G

for all 61,65 € © and (i,5) € I xpr J.

2.4. Structured Super-Markov. We present a slight generalisation of the Super-
Markov combinations of Definition 7(3c). Two category mappings I — M and
J — M and three statistical models are assumed: f(61) over I, h(f2) over M and
g(03) over J. The structured Super-Markov combination of f and g with respect
to h is the model over I X s J which is parametrised by (61, 62,63) and for k € M,
i € Iy, and j € Ji takes the value

(f ®n 9)i,5(61,02,03) = fz(91) 9;(03)

Fark(61) gk (03)

We can recover the Super-Markov combination by choosing h(62) in such a way
that all aggregates of f and g can occur. An example of this can be found in
Definition 7 where we set 3 = (05, ), with o € {0,1} indicating whether to take
h= fFar(65) or h = gar(6):

We calculate the aggregates of the Super-Markov as follows:

- hi(02) -

filbh) g;(0 fi(61)
® i(01,02,0 = - hy (0
(F @1 9)14(61,95, 65) = fari( 91 ng 93  fauk(61) o(02)
since the summation equals one. This expression does not depend on 63 and we may
write it as (f ®n g)(01,62). Analogously, the other aggregates over J and M are

9;(03)
gk (03)
Note that the two aggregates (f ®p g)r and (f ®p g)s are meta-consistent.

A notable property of the structured Super-Markov, and therefore of the ordi-
nary Super-Markov, is that it is closed with respect to repeated application and
marginalisation, as follows.

(f ®n 9),j(02,03) = hy(02) - and  (f ®n g)ark(02) = hp(02)
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In the meta-consistent case we have: (fxg)r*(fxg); = fxg (see Remark 15.)
In the structured Super-Markov case we have:

((f ©n 9)1 @n (f @n g)J)i’j((Gl,az),G’Q, (05,63))
(f ®n g)1.i(01,02) (f ®ng)s,;(63,05)

N (f ®n g)M,k(92) .hk(%) ' (f ®n Q)M,k(elzl)
_ fil6y) o 95(63)
 fark(61) i (6) g,k (03)

= (f ®h g)i,j(9170/27 93)

This confirms and generalises the result in [14] by which the Super-Markov combi-
nation is stable under structured recombination of its marginal components.

3. EXAMPLES

Example 10 (Structural zeros and independence). Suppose we want to model the
academic career of a PhD student. We record two variables which we assume to
be independent: the number of years X she spends in her doctoral program and
the number of publications Y she produces during that time. To keep the state
space finite, we set upper limits: x¢ = 5 for the number of years and yo = 10 for the
number of publications. Values beyond these thresholds are treated as censored and
we only record that X > xg or Y > yo.

To model this in our setup, we take I = {0,...,z0}, J ={0,...,5}, M ={0,1}
and category mappings p on I and ¢ on J such that p(0) = ¢(0) = 0 and all other
values of I and J are mapped into 1 € M. Finally we take the mapping product

IX]V[J:{(OaO),(xvy) | :EEI,yGJ,x,y>O}

as the state space for the joint random vector Z = (X,Y). This reflects two
modelling assumptions:

(1) if the doctoral programme was completed in any number of years (z > 0),
then there is at least one publication (e.g. the dissertation itself), i.e. y > 0.

(2) If there is at least one publication (y > 0), then the doctoral programme
must have been running for some time, i.e. > 0.

Therefore, (0,0) is the only valid case in which one of the two variables is zero.
Let fx be a probability law for X given as a density function on I, and analogously
define gy. The independence assumptions would give the joint distribution f(z,y) =
fx(x) gy(y) for (z,y) € I x J. But the joint model is defined only on I x s J and
the modelling assumptions imply fx(0) = gy (0), that is fx and gy are consistent
w.r.t. M. If fx and gy are from parametric families, e.g. both are Poisson distributed
with unknown parameters, then consistency imposes equality of parameters and fx
and gy are meta-consistent. Finally, the hypothesis of independence between fx
and gy is expressed by the following probability density function over I x; J:

F0) g0)

o el
(f * g) (JC, y) =
M otherwise
1 - f(0) '

Example 11 (Independence of discrete random variables). If in the previous example
we do not exclude the elements (x,0) and (0, y), then the standard Cartesian product
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I x J is the state space and the independence assumption corresponds to the usual
factorization fx x gx = fxgx, which is a special case of a Markov combination
where the set of meta-categories consists of a single element.

Example 12. For a more more abstract example let J = {—3,-2,—1,0,1} and
I={0,1,2,3}. Consider a two-element set of metacategories M = {a, b} and two
category mappings I — M, J — M where 0,1 — a and the other elements of I and
J map to b. The mapping product is
IXMJ:(LZXJG)U(I{)XJZ,)

where I, = J, ={0,1}, I, = {2,3}, and J, = {-3, -2, —1}. Two distributions f
and g over I and J, respectively, are consistent if f(0) + f(1) = g(0) + g(1). Their
Markov combination is
- f() ()
(fx9)(i, ) Zi/elk 7@
Example 13 (Distributions with given marginals). Consider three finite sets
A, B,C, and define I = A x C and J = C x B. Assume two distributions f: I — R
and ¢g : J — R such that the marginals over C coincide: fo = go. (Recall from
Example 4 that marginals are aggregates). We would like to define a distribution h
on A x C x B such that hy = f and hy = g. It turns out that h can be realised as
a Markov combination of f and g, once appropriate meta-categories are defined.

Let M = C and define the category mappings p: AxC - Candq:Cx B — C
as the projections to C. Then I x s J consists of all pairs ((a, ¢), (¢/,b)) where ¢ = ¢’
Therefore, I xp; J >~ A x C x B. Under this identification, the Markov combination

of f and g is
fla,c)g(e,b) _ fla,c)g(c,b)
b) = = .
(f*g)(a,c,b) felo) Za’GA fla',c)
The marginal distributions of f x g satisfy the required conditions
/ f((l, C)gC (C)
E b) = ——-"—-
Z / fe(e)g(e,b)
a/eA(f*g)(a 0= Cfc(c) =gled)
forallac A,be B, ceC.

Remark 14. Example 13 shows that our discrete Markov combinations are gener-
alisations of the Markov combinations of [15], applied to the discrete case.

forall k € M,i € I, j € Jg.

= f(a,¢) and

Remark 15. If p: I — M and q: J — M are category mappings and f € K(©)!,
g € K(©)7 are meta-consistent statistical models, then

(fxg)r=F and (fxg)s=y,
where the aggregates are taken with respect to the natural category mappings
mr: Il Xy J —Tand wy: I Xy J— J. For instance, for i € I we have

(fxq)ri= Z Jegr _ Z ffigj _ IMpiy = fi-

wr(it,j)=i fM,p(i’) a()=p(i) M,p(3) ijI:Z)(i)

This generalises the fact that for meta-consistent statistical models defined on
overlapping Cartesian spaces as in Example 13, the operation of Markov combination
preserves the margins.
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4. PROPERTIES

4.1. Associativity. Let f, g, and h be distributions on the finite sets I, J, and
K, respectively. The possibilities for combining f, g, h via Markov combinations
depend on the meta-category structure on I, J and K. Here we shall study these
possibilities in the case of meta-Markov combinations.

Assume that f, g and h are pairwise meta-consistent [14]. This means that there
are meta-categories My, My, and M3 and three pairs of category mappings relating
each pair of category sets such that the corresponding meta-consistence relations
hold, as shown in the following diagram:

/ I \
M, M3 Ian = gmn

P
S

Taking into account that the operator x is commutative, there are six possible
ways of obtaining a distribution from f, g, and h by applying a binary meta-Markov
combination twice.

har, = fur,

(fxan 9)*ms b (fran 9) o f %y (9 %0, B)
(f *ps5 B) %1, g J*a, (9 %0, h) [ xar; (h*ar, 9)

These are all well defined. Indeed, we can write the first combination due to the
category mapping I X, J — Ms given by passing through I, and the second
combination can be taken via the category mapping I X s, J — My passing through
J. Similar arguments apply to the others.

By expanding these expressions and using the fact that for a chain of category
mappings I — M — M’ and a distribution f on I we have (fas)nr = far, we
obtain the following equalities:

(f * M g) *Ms h = (f *Ms h) *M; 9

(f %y 9) *aa, b= f %01, (9 %01, D)

f*Ms. (g *M, h) = f*Ms. (h *M, g)'
In general, there are no more equalities among these six expressions. Indeed, the
equality (f*as ) *ns b = (f*nr, g) %1, b is equivalent to the existence of a bijection
M3 ~ M, that makes the above diagram commute, and such that has, = hjps, under
this bijection. Similar statements hold for the other two missing equalities.

If M := M; = My = M3, then the meta-consistency hypothesis is fi; = gn = has-
In this case, all six combinations are equal and full associativity holds:
(f*xm g) *aa b= fxn (g*aa h) = (f *m h) *ar g

More generally, if we are given m category mappings I, — M and pairwise meta-
consistent distributions fy on I, (for £ € {1,...,m}), the m-ary meta-Markov
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combination x}* , f; is defined by taking successive binary meta-Markov combinations
of the fy,. By associativity, every possible way to do this gives the same distribution.

4.2. Unit Element, Inverses. The unit element with respect to x is the degenerate
model 1 corresponding to the unique probability density function over the set with
one element. In general, there are no inverses with respect to x since the set of
categories of a meta-Markov combination always has at least as many elements as
the sets of categories of its components.

4.3. Mixtures. To demonstrate the flexibility of general Markov combinations
combined with aggregates, we show how to construct arbitrary mixture models
using only these two operations. Recall that for two parametric models (f;), (g;)
(i € I), the mizture Mixt(f, g) is defined as the model (A\f; + (1 — N)g;) (i € I),
where A € [0,1] is an additional parameter.

Proposition 16. Let f and g be two parametric models over the same finite set I.
Let 2 denote the one-parameter model defined by sending A € [0,1] to (A, 1—X). Then
Mixt(f, g) can be constructed from f, g, and 2 by a chain of Markov combinations
and aggregates as follows:

((f ¥ 2)a, * (g X 2)as,)na, = (Mfi + (1 = N)gi | i € I) = Mixt(f, g).
Proof. Construct the models
fx2=(\fi,A=Nfiliel) and gx2=(Ag;(1—ANg;|i€el)

as Markov combinations with the trivial category mapping I — {e}. Aggregate the
components of f x 2 involving 1 — A and those of g x 2 involving A to obtain

(fx2)p,=((Nfiltel),1=X) and (g% 2)p, = (A,((l—A)gi |i€I)).

Next, define category mappings to M3 = {0, 1} that put all Af; in the same category
as A and all (1 — A)g; in the same category as (1 — \). With these mappings, the
distributions (f x 2)as, and (g x 2)a7, are meta-consistent since >, Af; = X and
>;(1=X)gi =1 — X Their Markov combination is

(f X 2)p, (g X2, = (Afi, 1 —N)g; | i €1).
Aggregating the entries \f; and (1 — \)g; pairwise yields
((f X 2)my * (9 %X 2)m)may = (Mfi + (L= N)gi | i € I) = Mixt(f, g). 0
Remark 17. Mixture models have an m-ary variant defined as

Mixt(f9) | j € [m])y = > A £,
J

where £, ..., f(™) are models over I and the A; are non-negative parameters such
that > j Aj = 1. Up to a reparametrisation of the mixture parameters, these models
are equivalent to successive binary mixtures, for instance Mixt(Mixt(f,g),h) =~
Mixt(f, g, h). Therefore, m-ary mixtures can be obtained by concatenating binary
Markov combinations and aggregates.
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5. SPECIAL MODELS

5.1. Discrete Copulas. In this subsection, we establish a relationship between
discrete copulas in the sense of [12] and Markov combinations. We will show that the
product of two discrete copulas corresponds to a marginal of the Markov combination
of their distributions.

Let n,m € N and define (n) = {0,,...,n}, [n] = {1,...,n}. Following the
presentation of Kolesdrova et al. with (n) in place of I,, therein, a discrete copula is
a function

C:(n) x (m) —[0,1]
such that for all ¢ € (n) and j € (m),
(C1) C(5,0) = C(0,5) = 0,
(C2) C(i,m) =i/n, C(n,j) = j/m,
(C3) C(i—1,7—1)—C(i,7—1)—C(i—1,5) + C(i,5) > 0 whenever 7,5 > 1.
Recall that a matrix (a;;) € RLF™ is bistochastic if 331, ap = Z;;l arj =1 for
all k € [n]. For a function C : (n) x (n) — [0, 1], the following are equivalent:

(a) Cis a copula;
(b) there is a bistochastic matrix A = (a;;) € NI§" such that

i
Jj) = %Zzakﬁ

k=1 ¢=1
(c) there is a probability density A : [n] X [n] — [0, 1] such that for all ¢ € [n]

and j € [n]
thj:zn:hzﬁ—l/n and C(i,j) = Zth@
k=1 =1 k=1 =1

The equivalence between (a) and (b) is proven in [12]. The equivalence with (c)
follows by recalling that copulas are cumulative density functions of multivariate
random variables with uniformly distributed marginals and by setting h(k,¢) =
ay.¢/n = the left-hand term of the inequality in (C3).

To establish a relationship between products of discrete copulas and Markov
combinations, let Cy,Cs : (n)? — [0,1] be copulas, A = (a;;), B = (b;;) their
associated bistochastic matrices and «, 3 their associated distributions on [n]? given
by a;; = na(i, j) and b;; = nf(4, j). The authors of [12] define the product copula
as the copula corresponding to the bistochastic matrix A - B. A computation shows
that the distribution v associated to the product copula is given by

= ina(i,k)ﬁ(k,j) for all 4,7 € [n].

Now let I = J = [n] x[n], M = [n], and define the category mappings p : I — M and
q:J — M as the second and first projection to [n], respectively. Consider o and
as distributions on I and J, respectively. For k € M we have ap (k) = By (k) = 1/n
and therefore

zn:azk‘ (k,7) Zn:a*ﬁzk;j
k=1

=1
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Thus, v is a marginal distribution, i.e. an aggregate, of the Markov combination
of a and B. If we define M’ = [n] x [n] and the category mapping I X J =
[n] x [n] x [n] = M’ by sending (i, k, j) to (4, ), we can write this relationship more
succintly as

v = (axB)m-

Remark 18. The above discussion suggests a slight generalisation of copulas, where
in (c), the marginals of the density h are not 1/n but any two fixed distributions
v, i on [n] depending on the direction of the marginal, i.e.

n

D bk, j) = p() and Y h(i,0) = v(i).
=1

k=1
Then, condition (C2) would be replaced by

Cliom) =S (k) and C(n,j) = u(b).

i J
k=1 =1

Indeed, given (C1-C3) with the modified (C2), one can verify by telescope sums
that the left-hand side h(i,7) of (C3) defines a probability distribution on [n] x [n]
with marginals ¢ and v such that C' is the cumulative distribution of h.

5.2. Saturated models. In the discrete setting, a saturated model is a parametric
model f = (f;)ie; where the image of f: © — R! equals the probability simplex
AMI=1 This terminology is used for instance in [18]. A standard parametrisation
of any saturated model on I = {0,1,...,n} is given as follows: f = (6o,01,...,6n),
O1,...,0, >0,00:=1—=>",_0;. However the following example shows that other
parametrisations might be better for Markov combination.

Example 19. Let f = (09,01,02,05) and g = (no,7m1,72,73) be two saturated
models. Let I = J = {0,1,2,3} and define category mappings I — {0,1} and
J — {0,1} by setting Iy = {0,1}, I; = {2,3}, Jo = {0}, J1 = {1,2,3}. Then f and
g are not meta-consistent, as this would require

o + 61 = no
o + 03 = n1 + 12 + 3.
However, the above equations are satisfied by reparametrising g: set
g = (00 +01,m1,7m2,02 + 03 — 1 —12),

where 71,72 are two new parameters > 0. Then f and ¢’ are meta-consistent.
For a more systematic approach, introduce new parameters Aq, A2, A3 > 0 such
that A + A2 + A3 = 1 and set

g/ = (90 + 04, )\1(92 + 93), Az (62 + 93), )\3(92 + 93))
Then ¢’ is saturated and meta-consistent with f.
This example suggests the more general result of Proposition 20.

Proposition 20. For all pairs of category mappings I — M and J — M, any two
saturated models can be made meta-consistent after reparametrisation.

We prove Proposition 20 by chaining together the following constructions.
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Construction 21. Given a category mapping I — M and a model h over M, we
construct a model f over I such that fy; = h.

For k € M, let A, ; be new parameters such that Zielk Ak, =1 and for ¢ € I,
let fi = Ag,ihg. Then >, fi = hy and ), fi = 1. Therefore, f is a model over
I such that fy; = h. O

Lemma 22. In Construction 21, if h is saturated, then f is saturated.

Proof. Let (a;) € AI=1. Since h is saturated, there is a choice of parameters such
that aprk = hy for all £ € M. Now choose A\x; = a;/anr, k. With these parameters,
fi=ua; foralli € 1. O

Construction 23. Given category mappings I — M and J — M, we construct
saturated models over I and J that are meta-consistent with respect to these mappings.

Let h be the saturated model over M given by the standard parametrisation
h = (0g)ren- Use Construction 21 to define models f over I and g over J such that
fav = h = gy By definition, f and g are meta-consistent. Both are saturated by
Lemma 22.

Proof of Proposition 20. Let f’ and ¢’ be the given saturated models on I and J,
respectively. Use Construction 23 to define saturated models f on I and g on J that
are meta-consistent. These are the required reparametrisations of f’ and ¢’. Should
it be preferred to leave f’ as-is and to only reparametrize g, apply Construction 21
to J — M with h = g, to get the desired reparametrisation g. O

Example 24. Construction 23 gives meta-consistent f and g with respect to any
given pair of category mappings I — M and J — M. What is their meta-Markov
combination? By construction, for all k € M, i € I}, and j € J; we have

(1) (f*9)ij = Me,itk, ik

where A i, pk,j, hi are non-negative with Zielk Aii = ZjeJk Py = >, he = 1.
It follows that f x g is a special kind of mizture of independence models, which we
call a “pure mixture”. More precisely, we have for each k an independence model
AlTEI=15c A= embedded into AlEI7k1=1 yia the Segre embedding. Each of these
AEITkI=1 g taken to be the facet of a larger simplex, pairwise disjoint from all
other such facets. Then the | M |-mixture of these independence models is taken.

Example 25. For a more concrete example, let I — M and J — M be as the start
of the section, i.e. with Iy = {0,1}, I; = {2,3}, Jo = {0}, and J; = {1,2,3}. Then

= (Aooho, Ao1ho, AM2h1, Adizhy),

g = (pooho, p11ha, pazha, pasha),

fxg = (Aootooho, Ao1toohos
Arzpii1ha, Aizpizha, Azpasha, Aizpanhy, Mizpigha, Aispizha).

Thus, f * g is the “pure mixture” of A; and Ay X As as described above.
Example 26. Let us analyze variant (3a) of Definition 7 with respect to the standard
saturated models f = (6;) and g = (n;). Since f and g share no parameters, there is
no difference between (3a) and (3'a) of Definition 9. The parameters (6, ) of fxg map
surjectively onto the parameters (A;, u;, i) of Example 24 by taking hy, = >, 0k,
Ai = 0;/hi, 1y = n;j/hi. Furthermore, for each k, the entries of f x g over Iy, x Jj
satisfy the equations of the independence model Al7+I=1 x AlJxI=1 Therefore, the
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FIGURE 1. A typical staged tree T. On the left, the structure of
the tree and its edge labels. The tree has three florets, two of which
have the same edge labels. On the right, a schematic representation
for the whole tree.

image of f x g is contained in the image of f x g. Because of the surjective mapping
of parametrs, im(f * g) = im(f x g). So, in this case, (2) = (3a) = (3'a).

5.3. Regular exponential families. Discrete, regular exponential families f =
(fi)ier differ from saturated models in that a) the interior of Al/I=! equals the image
of f:© — AlI=1 and b) the dimension of the parameter space © equals |I| — 1,
so that © can be transformed into the space of canonical parameters of the family.
Since the constructions in Subsection 5.2 preserve these properties, the discussion
of Markov combinations of regular exponential families follows the lines of that
subsection. In particular, the Markov combination of two exponential families over
I and J with metacategories M is the interior of a pure mixture of independence
models. The dimension of its parameter space is computed as follows. Following
Equation (1), for each k € M there are 1 + |I| + |Ji| parameters and two linear
constraints. Additionally, there is one linear constraint for the hx. Summing over k
yields |M|+|I|+|J|—2|M|—1= |I|+|J| —|M|—1 free parameters. The dimension
of the ambient space is ), o), [Ix| - |Jk| — 1 as explained after Definition 5.

5.4. Staged Tree Models. A staged tree model is a probabilistic graphical model
for finite sample space processes introduced in [17] to model non-symmetric inde-
pendence and causality [19] among other applications. It is supported on a staged
tree and is a curved exponential family [9]. For further details on the definition and
usage of staged trees, see [8], [3], [13], [1], and references therein. Here, we recall
that a staged tree is defined by a directed rooted tree T' = (V, E') with a finite set of
vertices V' and whose edges F are labeled by the elements of a label set L. For each
vertex v € V, the set of edges E(v) = {e = (v,w) € E | w € V} is called a floret
and the labeling {0, € L | e € E} must satisfy the following condition:

e for any two florets F(v) and E(v'), the sets
{0.]e€ E(v)} and {0.|ece€ E(W)}

are either equal or disjoint.

Figure 1 depicts a staged tree with edge labels 6, 01, 05, 63 which, when interpreted
as transition probabilities, satisfy the linear condition 6y + 1 = 65 + 63 = 1 and are
non-negative.

A discrete parametric statistical model based on a stage tree T, called a staged
tree model, can be defined on the set I of all root-to-leaf paths of T' by taking the
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labels 6. € [0, 1] as parameters and setting

> fe=1forallveV and fi= [[ 6cforallicl
e€E(v) ecE(1)

where E(7) is the set of edges in the root-to-leaf path i € I. Whereas the edge labels
0. play the role of transition probabilities and are the model parameters, the f; play
the role of joint probabilities and define the statistical model itself.

Every staged tree T' can be decomposed as a collection of subtrees T71,...,T,,
attached to the leaves of a root tree S. We denote such a decomposition by

(2) (S,T1,...,Tm).

For example, the root tree S can be the root vertex of T', or a subtree T} can be a
leaf of T'. The subtrees T}, are staged trees with disjoint vertex sets V(T}) C V(T)
and edge sets E(Ty) C E(T), k =1,...,m. For the vertex and edge sets of S we
write V(S) and E(S), respectively. There are many decompositions for every given
staged tree, and every such decomposition induces a mapping {Leaves of T} —
{Leaves of S} by assigning to each leaf of T its closest ancestor among the leaves
of S. This defines an equivalent category mapping p : {Root-to-leaf paths of T} —
{Root-to-leaf paths of S} that assigns to ¢ € I the unique root-to-leaf path p(¢) of
S contained in 1.

Any decomposition (2) induces a factorisation of the model coordinates: for every
root-to-leaf path ¢ of T,

(3) Ji= H Oe H Oe | = Sp(i) ti

e€E(i)NE(S) e€E()NE(Tpi))

where T),;) is the unique subtree in the decomposition that contains a subpath of
i € I and s,(;), t; are the factors in the first and second parentheses, respectively.
Note that s,(;) depends only on p(i) € {Root-to-leaf paths of S}.

Let T and T” be staged trees and (S,T1,...,Ty) and (8,17, ...,T),) decompo-
sitions of 7" and T” with the same number of subtrees. A pair of category mappings

{Leaves of T} — {Leaves of S} +— {Leaves of T"}

can be realised via a bijection ¢ : {Leaves of S} — {Leaves of S’} which we denote
by k — k. Then for M = {Leaves of S} we have the following characterisation of
meta-consistence, see Figure 2 for a schematic representation.

Proposition 27. The staged tree models of T and T are meta-consistent if and
only if the probabilities of the root-to-leaf paths of the subtrees S and S’ are equal in
the model, that is

H 0. = H 0.,  for all root-to-leaf paths k of S.
e€E(k) o' CE(k)

With respect to the factorisations f; = s, t; and f] = 5:1(]‘) t’ as in (3), this

condition is equivalent to s,(;) = s ;) Whenever q(j) = ¢(p(i)) € M.

Proof. Let f be the model of T and f’ the model of T”. For root-to-leaf paths i of
T and j of T, write f; = sp;) ti and f = s;(j) t’ as in (3). For all root-to-leaf paths
k of S we have Zp(i):k t; = 1. This can be shown either inductively, starting with

the case where T; has height one (a floret) or by noting that ¢; is the conditional
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FIGURE 2. Meta-consistent decompositions of two staged trees,
represented as m subtrees T; resp. 1] attached to the m leaves of a
rooted subtree S resp. S’. The trees S and S’ are not necessarily
equal, but have the same number of leaves and represent the same
statistical model on m categories.

probability of the path i given that 7 contains the path p(z). Since s
same value, say s, for all ¢ such that p(i) = k, we have

fvg = Z Sp(i) ti = Sk Z l; = Sk.

p(i)=k p(i)=k

p(i) takes the

Therefore, f and f’ are meta-consistent if and only if s = s; (k) for all root-to-leaf
paths k& of S. We conclude the proof by noting that s, = HeGE(k) 0., and similarly
for Sp(k)- ([

Remark 28. The subtrees S and S’ need not be equal for the models of T' and
T’ to be meta-consistent, but they should have the same number of leaves and
consistent probabilities. For instance, suppose that S is a binary tree with four leaves
representing the joint probability space of two binary random variables X; and Xs.
Switching the order of the variables and changing the edge labels accordingly yields
a tree S’ different from S but with the same root-to-leaf paths.

Let T and T" be meta-consistent, (S,T4,...,Ty) and (S',T7,...,T},) their de-
compositions, and ¢ the bijection from the leaves of S to the leaves of S’. Then
their Markov combination 7" is obtained by taking T and attaching a copy of T;( i
to each leaf of T}, for j = 1,...,m. The staged tree 7" can therefore be decomposed
as (S,T7,...,T},) where T}' = (Tj’T</p(j)’ . 7T;(j)).

To see this, for each root-to-leaf path ¢ in T write its probability as f; = s,(;) t;
and similarly write f; = s| (j)t;- for each root-to-leaf path j of T” in the same
metacategory of i. Then, s,; = s; ) because of meta-consistency and thus
(f > f)ij = fi f/3p(i) = ti sp(iy t; where the first equality follows by definition of x.

Note that, depending on whether we prefer the formula for a right- or left Markov
combination, the roles of T' and T" can be reversed: an equally valid staged tree

representation for their Markov combination would be
(S (T}, Ty,....T0)s ., (T Ty o, To)-

This results in combinatorially distinct trees that are nevertheless statistically
equivalent (they give rise to the same staged tree model, see [8]). A schematic
depiction of these Markov combinations is found in Figure 3.
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F1cURE 3. Two statistically equivalent Markov combinations of
the two staged trees in Figure 2. On the left, the “tail” subtrees of
the second tree are attached to the leaves of the first tree. On the
right, the roles of the first and second tree are reversed.

6. THEOREMS

6.1. Model invariance. To formulate the principle of model invariance as explained
e.g. in [2, §6.4], one starts by considering a group G acting on the set of elementary
events. In the finite discrete case, each element of the group G gives a permutation
of the set of categories I. We write this action as G x I — I, («,i) — «-i. This
induces an action on A’ by

(OZ . U)i = 'Ua—l(i)

foralla e G,ve Al ic .

Definition 29. Let G x I — I be a group action and o € G. A statistical model
f:0 — Al is a-invariant if there exists an injective function @: © — © such that
ao f = foa. Thatis: f(0)a-10) = f(@(0)); for all € ©, i € I. The model f is
G-invariant if it is a-invariant for all a € G.

Example 30. Consider the binomial model f;(6) = (;)0’(1 -0t on I =
{0,...,n}. The group Z/2 = {1,7} acts on I by 7-4 = n —i. The model f
is Z/2-invariant via the function 7(6) :== 1 — 0.

If it exists, the maximum likelihood estimator is always G-invariant for any G.
We now bring the concept of invariance to Markov combinations. First we need to
ensure that the group operation is compatible with the chosen meta-categorisation.

Definition 31. Let p: I — M and q: J — M be category mappings and let G be
a group acting on both I and J. The group action is compatible with (p, q) if for all
ielandjeJ, if p(i) = q(j) then p(a-i) = g(a - 7).

Remark 32. If the action of G is compatible with (p, ¢), then there is an induced
action of G on M given by « - p(i) := p(a 7). This is well-defined since if p(i) = p(i’)
then p(a-i) = q(a - j) = p(a-4'), where j € J is any element such that ¢(j) = p(4).

Definition 33. Let G be a group acting on two sets of categories I and J. Two
statistical models f : © — Al and g : © — A’ are jointly G-invariant if, for all
a € G, both are a-invariant via the same injective function @ : © — ©.
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Theorem 34. Letp: 1 — M and q: J — M be category mappings, G a group
operating on I and J via a group action compatible with (p,q), and f : © — Al
g:0 — A7 two G-invariant models.
(1) There is an induced action of G on I xXpr J given by a - (i,5) = (a(i), a(y)).
(2) If f and g are jointly G-invariant and meta-consistent, then f x g is G-
1mvariant.
(8) The lower Markov combination f x g is G-invariant.
(4) The upper Markov combination f* g is G-invariant.
(5) The super Markov combination f ® g is G-invariant. If h: © — AM s q
G-invariant model, then the structured super Markov combination f ®p g is
G-invariant.

Proof. (1) The given operation is well-defined because the action of G is compatible
with (p,q). The axioms of a group action hold, i.e. for 8, € G, 1 € G the neutral
element, and = € I x; J we have
1. z=ux,
B-la-z)=(8 )z,
because G is a group action on [ and J.

(2) Let @ € G and f, g a-invariant via the injective map @ : © — O. Then, using
the induced G-action on M we get

f@0)np = Z f(@)a—10) = Z F(0)i = fara—10)(0).
p(i)=k p(i)=a~1(k)

Therefore,

i @0); _ f(O)a-1()9(0)a—1(5)

ab)ig
f@Oae  f(O)rra-1k)

(f*xg)(@)i; = = (f*x9)(0)a-1()-

(3) Let @ € G, f be a-invariant via @; : © — O and g be a-invariant via
Q0 — 0. Let @ = (a1,a2) : © x ©® - O x O. Then @ is injective and if
(91,92) € O x © with f(el)M,k = Q(QQ)M',k then

J@1(00) vk = fO) a0k = 9(01) a1 (k) = 9(@2(02)) ar. ks

so @(0y,02) is also a parameter of f x g. We compute

— f@ a~1(3 0 a~1(5
(F £0)(@(0.02),, = 1 1}(91;5;1)&) = (f % 9) (01, 02)a-1)-

(4) Let @« € G and f, g be a-invariant via @y, @s : © — O, respectively. Define
= (ay,a,id) : © x © x {0,1} = © x © x {0,1}. Then, for ¢ € {0,1},

(f *g)(@(01,02,0))i,; = (f * g)(01,02, ) a-1i 5

[

(5) Let @ € G and f, g be a-invariant via @y, as : © — O, respectively. For the
Super-Markov combination, define @: ©3 x {0,1} — ©3 x {0,1} by

_ _ _ -

01,0, = { O TOD )36 0

(041(91), 043((92), Oég(@g,),g) if ¢ =1.

Then f ® g is a-invariant via @.
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If in addition A is a-invariant via @s, then f ®j, g is a-invariant via
(61,62,63) : @3 — @3 [l

6.2. Maximum likelihood estimation of the Markov combination of satu-
rated models. In general, it is difficult to derive maximum likelihood estimators
(MLE) of a Markov combination given MLEs of its components.

For the Markov combination variants where parameters are shared between the
components, one runs into the problem of estimating incompatible parameters. For
instance, consider the meta-Markov combination of distributions f : © — Al and
g:© — Al where M = {1}. Then f x g is the product f;(#) g;(#). From MLEs
¢ : Al - 0O for fand ) : A — O for g we could estimate 6 = p(u) and 6 = 1 (v),

where
ui:E x;; and vjzg Tij-

jeJ il
However, there does not necessarily exist 6y such that f(6o)g(6o) = f(61)g(62).
Even in the Markov combination variants with separate parameters for each
component, one runs into problems because of the conditional distributions present.
For instance, for the structured Super-Markov

fi(61)

fark(01)

one could estimate 61, 5 and 03 using MLEs for f, h, and g, respectively. However,
an MLE for f is not necessarily an MLE for the conditional distribution f;/ fas 1 for
all k. Rather, one would need estimators ¢y, for each of the conditional distributions
fi/ faa i, which would again estimate potentially incompatible parameters 61 .

It is therefore our impression that MLEs for Markov combinations can only be
found on a case-by-case basis. To conclude this subsection, we give such an MLE
when f and g are saturated.

9;(03)

. hk(62) ' gM,k(93) .

Theorem 35. Let I — M and J — M be category mappings. Let M C AT*J
be the Markov combination of the saturated models AT and A’ as described in
Ezample 24. For (x;;) € A7 et

’Uq:ZSU” (ZEI),

jEJ

v = E Tij (]EJ)7
icl

A Ui Vg

Tij = —
UM kT

where T =), xij. Then ¢z & is an MLE for M.

Remark 36. In our setup where x is a distribution, the term x equals one and can
be omitted. But if the x;; are given as intensities instead, then one must divide by
the sum of the intensities, which gives the above formula with Z.

Proof of Theorem 35. We have im(p) = M and the map ¢ is rational in the entries
of x. Therefore, we can use a general criterion to show that ¢ is the MLE of the
model it parametrizes [7]. Specifically, we need to exhibit m € N, a matrix H of
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size m x |I x5 J|, and a vector A € RIZ*M7l such that the entries of each column
of H sum to zero and
he,i.5)

(4) o(x)i; =i || S hygnmi
/=1 (i/,j’)EIXJMJ

for all z € APl and (i,7) € T xpr J.

We define A = (1---1) and H as the direct sum of |M| matrices Hj, augmented
by a row of —1 entries. For all k € M, let Hy be the matrix of size (|I| + |J| +
{k}) x (I, x Jg|) defined as follows, where d,5 is the Kronecker Delta:

(Hk)i,(i’,j’) == 57;71;/,
(H)j. (10,5 = 03,55
(Hk)k,(i’,j’) == —1

For instance, if Iy = {1,2,3}, Jp = {1, 2, 3,4}, and we order |I}, x Ji| lexicographi-
cally, then

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Each column of H splits into a column of Hy (whose entries sum to 1) for some k,
and an entry of —1 due to the extra row. The sum of the entries of each column of
H is therefore zero.

We now analyze Equation (4). Denote the expression inside the parenthesis as
wy. Here, ¢ can be an element of I, J, or M, or £ = 0 to represent the additional
row. For i € I we have

w; = E i ir i = E Tijr = Uj.
(i’,j’)e[XJWJ j'ed

Similarly, we have w; = v; for all j € J. Because of the block diagonal form of the
upper piece of H, for k € M we have

wy = E P (i gy = E —Zjr g = —UM k-

(i3 )ETX pr T (4,4 €L X T
Finally, the additional row gives wy = —=.
Analysing Equation 4 further, we see that for all (i,5) € I x5 J, the factor
w?z’(i’j’ is # 1 in only four cases. If £ = i then this factor equals u;; if £ = j then

it equals v;; if £ = k then it equals (—ups)~"'; and if £ = 0 then it equals (—7)~ 1.

Therefore, the right-hand side of (4) equals
U;Vj

uM,;J’
as required. (Il

Remark 37. The pair (H, \) is called the Horn pair associated to .
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7. ALGORITHMS

We now detail algorithms to compute the distributions of meta-Markov combina-
tions and to sample from these.
Algorithm 38. Aggregates.
Input: a parameter space ©, a category mapping p : I — M, and a parametric
model f(60) = (fi(0))icr-
Output: the aggregate fy; and the aggregate categories Iy, k € M.

(1) for all k € M, set
I+ {i € 1| p6) = kY,
Fak(0) < > 2icp, fi(0).

(2) return fas, (Ix)kem

Algorithm 39. Meta-Markov combinations.

Input: a parameter space O, category mappings p: I — M and q: J — M, and
parametric models f(0) = (fi(6))icr and g(6) = (g;(6));c-

Output: the meta-Markov combination f x g if f, g meta-consistent, an error
otherwise.

(1) Compute far, g, Ik, Ji (k € M) with Algorithm 38.
(2) for all k € M, if far () # gar i (0) return error.

( ) SetIxMJ<—{(z 7 )|k€M7i€Ik,j€Jk}.

(4) for (i,5,k) € I xpr J, set

fi(0)g;(0)

(f *9)i,5,k(0) T @)

(5) return (f *g)(0)

Algorithm 40. Restricted lower Markov combinations.
Input: as in Algorithm 39.
Output: the restricted lower Markov combination (f x g)(6).
(1) as in Algorithm 39.
(2) solve the following system of equations for 6:
fari(0) = g e(0) for all ke M (x).

(3) set ©@ {0 €0O| (%)}
(4) return the output of Algorithm 39 called with the parameter space ©'.

Algorithm 41. Sampling from a Meta-Markov combination.
Input: as in Algorithm 39, assuming f and g are meta-consistent; 6 € ©.
Output: A sample (4,7) of (f xg)(8).
(1) Sample ¢ € I with probability f;(6).
(2) Set Jpuy < {5 € J [ q(j) = p(i)}-
(3) Sample j € J,;) with probability g;(6)/gnrpe)(0)-
(4) return (7,j).
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Algorithm 42. Sampling from a structured Super-Markov combination.

Input: as in Algorithm 39, with the addition of a parametric model h(0) =
(hi(0))kenrs- and a parameter 6 € O.

Output: A sample (4,7) of (f ®p g)(8).

(1) Sample k € M with probability hy.

(2) Set I, + {i € I'| p(i) = k}.

(3) Sample i € I}, with probability f;(0)/f, ().
(4) Continue with steps (2)—(4) of Algorithm 41.

8. DiIscussioON

Markov combinations provide a general way to combine discrete statistical models.
The different available variants, and the choice of meta-categorisation, provide a
flexible way to adapt Markov combinations to practicioners’ needs. This flexibility
may come at a cost, however: the meta-categorisation needs to be carefully chosen,
and to fit the problem at hand.

A way to gain intuition on which meta-categorisations are useful would be to
examine Markov combinations in more classes of models. We see the possibility
of bringing our methods to classes such as relational models [11] and undirected
probabilistic graphical models for discrete variables. The case of DAG graphical
models, i.e. Bayesian networks, is already covered by staged trees. We reserve these
considerations to future work.

Other possible theoretical considerations for future work are the study of moments
of discrete Markov combinations and the estimation thereof, a study of partial
likelihood estimation or profile likelihood estimation, a study of maximum likelihood
estimators for more types of Markov-combined models, and the extension of Markov
combinations to discrete but not necessarily finitely-supported models.

ACKNOWLEDGEMENTS

ER and OM were supported by the European Research Executive Agency (Project
no. 101061315-MIAS-HORIZON-MSCA-2021-PF-01). ER acknowledges the fi-
nancial support from the “Hub Life Science - Digital Health (LSHDH) PNC-E3-
2022-23683267 - Progetto DHEAL-COM 7, funded by the Italian Ministry of Health
within the Piano Nazionale Complementare for the “PNRR Ecosistema Innovativo
della Salute”. This work was also partially supported by the MIUR Excellence
Department Project awarded to the Department of Mathematics, University of
Genoa.

REFERENCES

[1] Federico Carli, Manuele Leonelli, Eva Riccomagno, and Gherardo Varando. The R package
stagedtrees for structural learning of stratified staged trees. Journal of Statistical Software,
102(6):1-30, 2022.

[2] George Casella and Roger Berger. Statistical Inference. Chapman & Hall/CRC, 2024.

[3] Rodrigo A. Collazo and Jim Q. Smith. A new family of non-local priors for chain event graph
model selection. Bayesian Analysis, 11(4):1165-1201, 2016.

[4] A. Philip Dawid and Steffen L. Lauritzen. Hyper Markov laws in the statistical analysis of
decomposable graphical models. The Annals of Statistics, 21(3):1272-1317, 1993.

[5] Persi Diaconis and Bernd Sturmfels. Algebraic algorithms for sampling from conditional
distributions. The Annals of statistics, 26(1):363-397, 1998.



(6]

[7

8

=

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]

(18]
(19]

MARKOV COMBINATIONS OF DISCRETE STATISTICAL MODELS 23

Mathias Drton, Bernd Sturmfels, and Seth Sullivant. Lectures on Algebraic Statistics.
Birkhauser Basel, 2009.

Eliana Duarte, Orlando Marigliano, and Bernd Sturmfels. Discrete statistical models with
rational maximum likelihood estimator. Bernoulli, 27(1):135-154, 2021.

Christiane Gorgen, Anna Bigatti, Eva Riccomagno, and Jim Q. Smith. Discovery of statistical
equivalence classes using computer algebra. International Journal of Approrimate Reasoning,
95:167-184, 2018.

Christiane Goérgen, Manuele Leonelli, and Orlando Marigliano. The curved exponential family
of a staged tree. Electronic Journal of Statistics, 16(1):2607-2620, 2022.

Robert J. B. Goudie, Anne M. Presanis, David Lunn, Daniela De Angelis, and Lorenz Wernisch.
Joining and splitting models with Markov melding. Bayesian Analysis, 14(1):81-109, 2019.
Anna Klimova, Tamas Rudas, and Adrian Dobra. Relational models for contingency tables.
Journal of Multivariate Analysis, 104(1):159-173, 2012.

Anna Kolesdrova, Radko Mesiar, Juliana Mordelova, and Carlo Sempi. Discrete copulas. IEEE
Transactions on Fuzzy Systems, 14(5):698-05, 2006.

Manuele Leonelli and Gherardo Varando. Structural learning of simple staged trees. Data
Mining and Knowledge Discovery, 38(3):1520-1544, 2024.

M. Sofia Massa and Steffen L. Lauritzen. Combining statistical models. In Algebraic methods
in statistics and probability II, pages 239-259. American Mathematical Society, 2010.

M. Sofia Massa and Eva Riccomagno. Algebraic representations of Gaussian Markov combina-
tions. Bernoulli, 23(1):626-644, 2017.

Giovanni Pistone, Eva Riccomagno, and Henry P. Wynn. Algebraic Statistics: Computational
commutative algebra in statistics. Chapman and Hall/CRC, 2000.

Jim Q. Smith and Paul E. Anderson. Conditional independence and chain event graphs.
Artificial Intelligence, 172(1):42—68, 2008.

Seth Sullivant. Algebraic Statistics. American Mathematical Society, 2018.

Peter Thwaites, Jim Q. Smith, and Eva Riccomagno. Causal analysis with chain event graphs.
Artificial Intelligence, 174(12-13):889 — 909, 2010.



	1. Introduction
	2. Definitions
	2.1. Category mappings and aggregates
	2.2. Mapping products
	2.3. Markov combinations
	2.4. Structured Super-Markov

	3. Examples
	4. Properties
	4.1. Associativity
	4.2. Unit Element, Inverses
	4.3. Mixtures

	5. Special Models
	5.1. Discrete Copulas
	5.2. Saturated models
	5.3. Regular exponential families
	5.4. Staged Tree Models

	6. Theorems
	6.1. Model invariance
	6.2. Maximum likelihood estimation of the Markov combination of saturated models

	7. Algorithms
	8. Discussion
	Acknowledgements
	References

