
The Algebraic Statistics of
Sampling, Likelihood, and Regression

Der Fakultät für Mathematik und Informatik
der Universität Leipzig eingereichte

Dissertation

zur Erlangung des akademischen Grades

Doctor Rerum Naturalium
(Dr. rer. nat.)

im Fachgebiet

Mathematik

vorgelegt von

Orlando Marigliano

geboren am 5. August 1994 in Rom

Leipzig, den 2. Juni 2020





Abstract

This thesis is about statistical models and algebraic varieties. Algebraic Statistics unites
these two concepts, turning algebraic structure into statistical insight. Featured here are
three types of models that have such an algebraic structure.

Linear Gaussian covariance models are continuous models which are simple to define but
hard to analyze. We compute their maximum likelihood degree in dimension two and
find it equal to 2n− 3 generically if the model has n covariates.

Discrete models with rational MLE are those discrete models for which likelihood
estimation is easiest. We characterize them geometrically by building on the work of Huh
and Kapranov on Horn uniformization.

Algebraic manifolds are a more general kind of object which is used to encode continuous
data. We introduce a new method for computing integrals and sampling from distributions
on them, based on intersecting with random linear spaces.

A brief report on mathematics in the sciences featuring case studies from soil ecology
and nonparametric statistics closes the thesis.
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1. Introduction

A traditional algebraic geometer does not suspect that their discipline can be useful
outside of mathematics. I was surprised to discover that in Algebraic Statistics this is the
case. In this field of mathematics, researchers use recent techniques from algebra, geometry,
and combinatorics to solve problems in theoretical statistics. For instance, computational
commutative algebra can help address problems in sampling and experimental design, as
the early works [26] and [69] demonstrated. Since then, algebraic statistics has expanded.
It now connects to a range of topics including polytope theory [52], causality [85], toric
geometry [65] and phylogenetics [68].

This thesis contributes to Algebraic Statistics in the realm of maximum likelihood
estimation. This is an important problem in statistics related to model selection and
parameter estimation. The algebraic statistician addresses this problem by focusing on
algebraic models. These models are attractive because they lend themselves to algebraic
techniques. This thesis features special discrete algebraic models in Chapter 3 and linear
Gaussian models in Chapter 2.

More broadly, this thesis is about exploiting the geometric and algebraic structure of
data. This promising approach to data analysis is taken for instance in the articles [10]
and [30]. Continuous data can sometimes be modeled by a manifold. Hence, sampling
from one in an efficient way is an important problem. Chapter 4 addresses this problem
in the case of algebraic manifolds.

In Chapter 5, I include two case studies on mathematics in the sciences. There, I record
the main mathematical insights and their significance to their respective applications.
That chapter features the fields of soil ecology and nonparametric statistics.

In the next four sections, I introduce some common terminology and illustrate the main
themes of this thesis with simple examples. I also set up problem statements to be
solved by each of the three main chapters. The examples are well-known toy examples in
algebraic statistics and can be found for instance in the textbook [83].

Notation

In the next sections, I unify the formalism for discrete and continuous statistical models.
Hence, some of the notation might appear non-standard to the reader. In general, I denote
statistical models (varieties, manifolds) by calligraphic capital letters such asM. I denote
the points of these models by x, y, z. When the points are interpreted as probability
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distributions I write p, q, or Σ instead. I identify a Gaussian probability distribution
(having zero mean) with its covariance matrix Σ. I use X,Y for random variables and e
for random events.
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1.1. Algebraic models

A statistical model M is a subset of the set of probability distributions on some sample
space Ω. In statistics, this subset is often the image of some parameter map Θ →M.
The basic problem of maximum likelihood estimation is to find the distribution x ∈M
that best explains a set of observations e ∈ ΩN . If the distributions x ∈M have densities
fx, this amounts to maximizing the log-likelihood

N∑
i=1

log fx(ei) (1.1.1)

over all x ∈M. The implicit assumption here is that there is a true probability distribution
on Ω that generated the samples e1, . . . , eN independently of each other. Maximizing the
log-likelihood has thus the effect of maximizing the density of e in the product space
ΩN . For more background on likelihood estimation and statistics in general, see the
textbook [16].
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Example 1.1.1. Let Ω = {0, 1, 2, 3}. The space of all probability distributions on Ω can
be represented by the tetrahedron

∆3 = {(p0, p1, p2, p3) ∈ R4 | pj ≥ 0 for all j,
∑

j pj = 1}.

The independence model for two binary random variables is the set

M = {p ∈ ∆3 | p0p2 − p1p3 = 0}.

Suppose we observe the sample e = (0, 1, 2, 2, 3, 2, 0). Maximizing the log-likelihood (1.1.1)
amounts to maximizing the sum

2 log p0 + log p1 + 3 log p2 + log p3

over M. Observe that this sum does not depend on the ordering of the entries of e.
Instead, it only depends on the vector of counts u defined by uj = #{i | ei = j} for
j = 0, . . . , 3. Here, u = (2, 1, 3, 1).

Definition 1.1.2. A discrete statistical model on n + 1 outcomes is a subset M of the
probability simplex

∆n := {p ∈ Rn+1 | pj ≥ 0 for all j,
∑

j pj = 1},

which we interpret as the set of probability distributions on the finite set Ω = {0, . . . , n}.
Example 1.1.1 illustrates that for the purpose of likelihood estimation it suffices to
represent a sample e ∈ ΩN by its vector of counts u ∈ N|Ω|. The sample size is recovered
by the quantity |u| :=

∑
j uj . Another way to represent the sample e is to identify it

with its empirical distribution, which is defined by q := u/|u|. The maximum likelihood
estimation problem for an empirical distribution q ∈ ∆n is then to maximize the value of
the log-likelihood function

`(p, q) :=
n∑
j=0

qj log pj (1.1.2)

over all p ∈ M. Note that if e is a sample and u its vector of counts, then `(p, u/|u|)
differs from the expression in (1.1.1) by a multiplicative constant that does not depend
on p.

Example 1.1.3. Let Ω = R3. The space of all Gaussian probability distributions on Ω
with zero mean can be represented by the set

PD3 = {Σ ∈ Mat(3× 3,R) | Σ symmetric, positive definite}

of all 3× 3 covariance matrices. The conditional independence model of two Gaussian
random variables given a third is the set

M = {(σij)i,j ∈ PD3 | σ12σ33 − σ13σ32 = 0}.
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Suppose we observe the sample e = ((1, 1, 1), (1, 2, 3), (−1, 0, 0)). Let

S =
1

3

(
(1, 1, 1)T (1, 1, 1) + (1, 2, 3)T (1, 2, 3) + (−1, 0, 0)T (−1, 0, 0)

)
=

1

3

3 3 4
3 5 7
4 7 10


be the sample covariance matrix of e. Up to additive and multiplicative constants that
do not depend on Σ, the log-likelihood (1.1.1) reduces to the expression

− log det(Σ)− tr(SΣ−1).

Definition 1.1.4. A Gaussian statistical model on n random variables is a subset M of
the cone of positive definite symmetric matrices

PDn := {Σ ∈ Mat(n× n,R) | Σ symmetric, positive definite},

which we interpret as the set of Gaussian probability distributions on Ω = Rn. Ex-
ample 1.1.3 illustrates that for the purpose of likelihood estimation, it is enough to
represent a sample e ∈ ΩN by its sample covariance matrix S = (1/N)

∑N
i=1 eie

T
i . The

maximum likelihood estimation problem for a sample covariance matrix S ∈ PDn is then
to minimize the value of the negated log-likelihood function

`(Σ, S) := log det(Σ) + tr(SΣ−1) (1.1.3)

over all Σ ∈M.

This thesis focuses on algebraic models, defined below. Recall that a semi-algebraic set is
a subset of Rn defined by polynomial equations and inequalities.

Definition 1.1.5. An algebraic model is a semi-algebraic subset M of a semi-algebraic
set N of distributions on some space Ω. We call N the space of empirical distributions.

Examples 1.1.1 and 1.1.3 are algebraic models. Their space of empirical distributions is
∆n and PDn, respectively.

1.2. The maximum likelihood degree

The likelihood estimation problem for an algebraic model M⊆ N starts with the log-
likelihood function ` : M×N → R defined for the model and asks for the critical points
of the restriction of ` to M×{y} for a fixed y ∈ N . One method for finding these points
uses Lagrangian multipliers. The first step is to set up the Lagrange multiplier function

L(x, y, λ) = `(x, y)−
r∑

k=1

λkgk(x, y)

13



where the g1, . . . , gr are the polynomials specifying the equalities in the definition of M,
and λ ∈ Rr. The next step is to solve the system of equations ∇(x,λ)L(x, y, λ) = 0, called
the score equations, which depend on the gradients of ` and gk.

For discrete or Gaussian algebraic models, the score equations are rational functions of
their arguments. This fact is not true in general. It is an important advantage of these
algebraic models. It allows us to use algebraic techniques for the likelihood estimation
problem. To illustrate this, we first need to pass to complex coefficients.

Every algebraic model M ⊆ N has an associated embedding MC ⊆ NC of complex
algebraic varieties. It is obtained by changing the base field to C and only considering
the defining equalities for M and N , discarding their defining inequalities. Now we can
view the score equations as rational functions of x ∈MC, y ∈ NC, and λ ∈ Cr.

An argument in algebraic geometry shows that for general y ∈ NC, the number of
solutions to the score equations does not depend on y. More precisely, there exists a
number d and a Zariski-open subset U of NC such that for all y ∈ U , the number of
complex solutions to the score equations, counted with multiplicties, is d. That number
is called the maximum likelihood degree, or ML degree, of the model M. For a detailed
explanation of the terminology around “general points” see the end of Section 2.1.

Knowledge of the ML degree of a model is important when applying numerical algebraic
geometry methods to solve the maximum likelihood estimation problem. In particular, it
gives a stopping criterion for monodromy methods [82, Sec. 5]. More intuitively, the ML
degree of a model is interesting because it gives a measure of its “likelihood estimation
complexity”. By analogy, the algebraic degree of an algebraic variety is a measure of its
“intersection-theoretic complexity”.

We can define the ML degree for any algebraic model with rational score equations. For
the algebraic argument needed to make this notion well-defined, see Lemma A.1. For
more background on ML degrees, see [17] and [27, Ch. 2].

When an algebraic model is parametrized by a polynomial map, the score equations
become simpler since there is no need to introduce the Lagrange multipliers λ.

Example 1.2.1. The independence model for two binary random variables is parametrized
by the map ϕ : [0, 1]2 →M defined by ϕ(x, y) = (xy, (1−x)y, x(1−y), (1−x)(1−y)). With
this parametrization, the log-likelihood function is the function obtained by composing the
function ` from Equation (1.1.2) with ϕ. For fixed q ∈ ∆3, the resulting score equations
`1,2 : [0, 1]2 ×N → R are

`1(x, y) =
q1

x
− q2

1− x
+
q3

x
− q4

1− x
,

`2(x, y) =
q1

y
+
q2

y
− q3

1− y
− q4

1− y
.
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Example 1.2.2. Let A and B be two positive definite symmetric n × n matrices. The
parametrized statistical model

M = {Σ = xA+ yB | x, y ∈ R2, Σ positive definite}

is the two-dimensional linear covariance model on n variables. Its log-likelihood function
is obtained by substituting Σ = xA+ yB in the expression in (1.1.3). The score equations
are obtained by differentiating with respect to x and y. Setting P = det(xA+ yB) and
T = tr(S adj(xA+ yB)), we thus have the score equations

`x(x, y) =
Px
P

+
PTx − TPx

P 2

`y(x, y) =
Py
P

+
PTy − TPy

P 2
,

where the subscripts indicate differentiation with respect to that variable.

The family of models in Example 1.2.2 is of special interest for this thesis:

Problem (Chapter 2). Find the ML degree of a general two-dimensional linear Gaussian
covariance model on n variables.

In Chapter 2, we will see how to solve this problem using the intersection theory of plane
curves. The two score equations define two curves in the projective plane with some
points removed. By analyzing carefully how they intersect, taking the removed points
into account, we arrive at the figure of 2n− 3 intersection points. This is the ML degree
of the model.

Asking the ML degree of some given model has its inverse problem: given an ML degree,
we could ask which models of a certain class have it. The case where the ML degree is
one is special because in that case, the unique solution to the score equations can be
expressed as a rational function of the data. This is implied by the proof of Lemma A.1.
The next section focuses on discrete models with ML degree one.

1.3. ML degree one and rational MLE

Let M ⊆ ∆n be a discrete statistical model with ML degree one. Then there exists a
rational map ΦC : ∆n,C →MC sending a point q ∈ ∆n,C to the unique critical point of
the score equations. Here, the “C” in the index indicates complexification of algebraic
sets as defined in Section 1.2. Restricting to the real numbers, we get a rational map
Φ: ∆n → M that sends an empirical distribution q to the unique maximizer of the
log-likelihood function.

Definition 1.3.1. The map Φ is called the maximum likelihood estimator of M.

15



Example 1.3.2. The score equations from Example 1.2.1 for an empirical distribution
q = (q1, . . . , q4) are solved by x̂, ŷ 6= 0, 1 with

x̂ =
q1 + q3

q1 + q2 + q3 + q4
, ŷ =

q2 + q4

q1 + q2 + q3 + q4
,

which are rational expressions in q. Thus, the model has ML degree one with maximum
likelihood estimator Φ(q) = ϕ(x̂, ŷ).

In Example 1.3.2, we see that the coordinates of Φ are not only rational functions but
even alternating products of linear forms in q = (q1, . . . , qn). This is no coincidence.
Huh [46] proved that each of the coordinates of ΦC is an alternating product of linear
forms, with numerator and denominator of the same degree. Huh further showed that
this alternating product must take a very specific shape. That shape was discovered by
Kapranov [51] who named it the Horn uniformization.

Horn uniformizations need not come from statistical models, in general they just have
the form ΦC : Cn → Cn. However, any Horn uniformization that restricts to a map
Φ: ∆n → ∆n gives rise to a statistical model by setting M = im(Φ). Thus, a strategy
for characterizing discrete statistical models with ML degee one emerges: characterize
precisely those cases where the restriction Φ of a Horn uniformization ΦC to the real
numbers defines a statistical model im(Φ).

Problem (Chapter 3). Characterize all discrete statistical models with rational MLE.

We will solve this problem in Chapter 3 by a topological argument that exploits the
real setting, coupled with a careful analysis of the Horn uniformization. Additionally,
every Horn uniformization comes with a corresponding toric variety. We will see what
conditions the toric variety must satify to define a model. This will give a recipe for
creating many examples of models with ML degree one starting from toric varieties.

1.4. Algebraic manifolds

In statistics and applied mathematics, manifolds are useful models for many types of
continuous data. For example, in computational statistical physics the state space of a
collection of particles is a manifold. Each point on this manifold records the positions
of all particles in space. Meanwhile, Topological data analysis studies the geometric
properties of a point cloud in some Euclidean space. Learning the manifold that best
explains the position of the points is a research topic in this field. In Section 4.2 we will
see examples of both applications.

Definition 1.4.1. An algebraic manifold is an open submanifold M of the set of non-
singular solutions to a system of polynomial equations.
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Any algebraic statistical model with singularities removed is an example of an algebraic
manifold.

Whenever we use a manifold M to model data, we are interested in performing two
basic computations: to integrate a function on M, and to sample from some probability
distribution on M. In this thesis, we are interested in the case where M is algebraic:

Problems (Chapter 4). Let M be an algebraic manifold given as the solution set of a
system of polynomial equations and inequalities.

(1) Approximate the Lebesgue integral
∫
M f(x) dx of a given function f on M.

(2) Sample from a probability distribution with a given density on M.

Chapter 4 proposes a new method to solve the above problems based on intersecting M
with random hyperplanes. We achieve this in practice with computational methods from
numerical algebraic geometry. The main tool to establish the theoretical results will be
the coarea formula from geometric measure theory.

17



2. Two-dimensional linear covariance
models

A linear Gaussian covariance model is a collection of multivariate Gaussian probability
distributions whose covariance matrices are linear combinations of some fixed symmetric
matrices. This chapter is about the two-dimensional linear Gaussian covariance model seen
in Example 1.2.2. Here, all of the covariance matrices in the model lie in a two-dimensional
linear space. Linear Gaussian covariance models were first studied by Anderson in [2]
in the analysis of time series models. They continue to be studied towards this end, for
example, in [87].

One common type of linear Gaussian covariance model is obtained by prescribing zero
entries in the covariance matrix. These models often have a clear statistical interpretation.
For instance, given a Gaussian random vector (X1, . . . , Xn) with covariance matrix
Σ ∈ Rn×n, we can discern independence statements from the zeros in Σ. For example,
the disjoint subvectors (Xi1 , . . . , Xik) and (Xj1 , . . . , Xjl) are independent if and only if
the submatrix of Σ that consists of rows i1, . . . , ik and columns j1, . . . , jl is the zero
matrix [83, Prop. 2.4.4].

Maximum likelihood estimation for covariance matrices with a fixed independence struc-
ture was studied in [18]. These types of models find applications for example in the study
of gene expression using relevance networks [15]. The nodes of these networks represent
genes. They are connected with an edge if their expressions are sufficiently correlated.
The edges and non-edges in the resulting graph dictate the sparsity structure of the
covariance matrix. Problems related to estimation of sparse covariance matrices have
been studied in [6] and [73].

Linear Gaussian covariance models also find applications in the field of phylogenetics.
In particular, Brownian Motion tree models, which model the evolution of normally
distributed traits along an evolutionary tree, are linear Gaussian covariance models [34].
This chapter focuses on linear combinations of two matrices, while the covariance matrices
of Brownian Motion tree models usually require more. However, the results in this chapter
could find applications to mixtures of such models. They apply, for example, to models
of trait evolution that consider two genes instead of just one [49].

Algorithms for computing the maximum likelihood estimate for generic linear Gaus-
sian covariance models have been extensively studied [1,2,6, 18]. Nevertheless, to fully
understand these models we need many more theoretical results. Zwiernik, Uhler and
Richards have shown that when the number of data points is sufficiently large, maximum
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likelihood estimation for such models behaves like a convex optimization problem in
a large convex region containing the maximum likelihood estimate [89]. This chapter
contributes a result about the ML degree of two-dimensional linear covariance models for
an arbitrary number of covariates.

Section 2.1 formally defines the models to consider, states our main result (Theorem 2.1.4),
and offers a proof strategy. The remainder of the chapter carries out this strategy, starting
with some important geometric preliminaries in Section 2.2. Afterwards, the problem
reduces to computing two intersection multiplicities. The first one is done in Section 2.3.
The second one and the proof of the main result are detailed in Section 2.4. Section 2.5
closes the chapter with a discussion on higher-dimensional linear covariance models.

2.1. The model and its score equations

Let n be a natural number and let PDn ⊂ R(n+1
2 ) denote the cone of all n× n symmetric

positive definite matrices. We view PDn as the space of covariance matrices of all normal
distributions N (0,Σ) with zero mean.

Definition 2.1.1. Let A and B be symmetric n×n matrices. The two-dimensional linear
Gaussian covariance model with respect to A and B is the algebraic subset MA,B of
PDn defined by

MA,B = {xA+ yB | x, y ∈ R} ∩ PDn.

So, MA,B is the intersection of the positive definite cone with the linear span of A and
B. By convention, we assume this intersection to be non-empty.

Given independent, identically distributed (i.i.d.) samples e1, . . . , eN ∈ Rn from some
normal distribution, the maximum likelihood estimation problem for MA,B is to find a

covariance matrix Σ̂ ∈MA,B , if it exists, that maximizes the value of the log-likelihood

N∑
i=1

log fΣ(ei) (2.1.1)

from Section 1.1, where fΣ is the density of N (0,Σ). Let

S :=
1

N

N∑
i=1

eie
T
i .

The matrix S is called the sample covariance matrix. Since for all Σ the value of (2.1.1)
only depends on S, we identify the observation represented by N i.i.d. samples from a
normal distribution with the empirical distribution defined by their sample covariance
matrix S. More precisely (2.1.1) can be written in terms of S as

− Nn

2
log(2π)− N

2
log det(Σ)− N

2
tr(SΣ−1). (2.1.2)

The maximizer of (2.1.2) is equal to the minimizer of the following function.
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Definition 2.1.2. The negated log-likelihood function ` of a positive definite symmetric
matrix Σ and a symmetric matrix S is defined by

`(Σ, S) := log det(Σ) + tr(SΣ−1). (2.1.3)

When we restrict to the model MA,B, we require that Σ = xA+ yB for some x, y ∈ R
such that xA+ yB is positive definite. So the maximum likelihood estimation problem in
this case is equivalent to

argmin
x,y

`(xA+ yB, S)

subject to xA+ yB ∈ PDn.

To find local extrema of (2.1.3), we set its gradient equal to 0 and solve for x and y. The
two resulting equations are called the score equations.

Definition 2.1.3. The score equations forMA,B are the partial derivatives of the function
`(xA + yB, S) with respect to x and y. The maximum likelihood degree or ML degree
of MA,B is the number of complex solutions to the score equations, counted with
multiplicities, for a generic sample covariance matrix S.

Definition 2.1.3 refers to a generic sample covariance matrix. We give a detailed explana-
tion of this term from algebraic geometry at the end of this section.

The score equations are rational functions of the empirical distribution S. This allows
us to analyze them using algebraic methods as explained in Section 1.2. To see this, let
Σ = xA+ yB. For the sake of brevity, we will denote

P (x, y) = det Σ and T (x, y) = tr(S adj Σ),

where adj Σ is the classical adjoint. With this notation, the function ` takes the form

`(Σ | S) = logP +
T

P
.

Accordingly, the score equations are

`x(x, y) =
Px
P

+
PTx − TPx

P 2
,

`y(x, y) =
Py
P

+
PTy − TPy

P 2
.

Here and throughout, the notation hx is used for the derivative of a function h with
respect to the variable x. We are concerned with values of (x, y) ∈ C2 where both of
the score equations are zero. We clear denominators by multiplying `x and `y by P 2 to
obtain two polynomials,

f(x, y) := PPx + PTx − TPx,
g(x, y) := PPy + PTy − TPy.

(2.1.4)
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Next, we record the degrees of each relevant term for generic A, B and S. Specifically,
their total degree with respect to their variables x and y are:

degP = n,

degPx = degPy = deg T = n− 1,

deg Tx = deg Ty = n− 2.

A polynomial h is called a homogeneous form if each of its terms has the same degree. The
polynomials f and g in (2.1.4) can be written as a sum of a homogeneous degree 2n−1 form
with a homogeneous degree 2n−2 form. For instance, we have f = (PPx+PTx)−(TPx).

The critical points of ` are in the variety V (f, g). However, this variety also contains
points at which ` and the score equations are not defined since we cleared denominators.
The ideal whose variety contains precisely the critical points of ` is the saturation

J = I(f, g) : 〈P 〉∞

:= {h ∈ C[x, y] | hP r ∈ I(f, g) for some r ≥ 0}.

Here, saturating with P = det Σ removes all points in V (f, g) where the determinant
is zero and ` is undefined. For more details on the geometric content of saturation, see
Chapter 7 of [83]. In Lemmas 2.2.2 and 2.2.3, we will show that I(f, g) and hence J is
zero-dimensional. The ML degree of the model is hence the degree of J . This is equal
to the number of isolated points in the variety of J counted with multiplicity. For more
background on degrees of general varieties, see [44, Lec. 13] and [77, Ch. 4, Sec. 1.4].

We can now state the main result and offer an outline for its proof which we will follow
in the remaining sections.

Theorem 2.1.4. For generic n×n symmetric matrices A and B, the maximum likelihood
degree of the two-dimensional linear Gaussian covariance model MA,B is 2n− 3.

This means that the expected number of complex solutions to the score equations for a
modelMA,B is 2n−3. For the proof strategy of Theorem 2.1.4, we use Bézout’s Theorem,
a proof of which can be found in Chapter 5.3 of [37]. Our plan to prove Theorem 2.1.4 is
to first turn the score equations f and g into two projective plane curves and then to
calculate their intersection points. Bézout’s Theorem does exactly this, but it overcounts
since we added some superfluous points. So, the second part of the proof strategy is to
remove those superfluous points.

Theorem 2.1.5 (Bézout’s Theorem). Let H and K be projective plane curves of degrees
d1 and d2 respectively. Suppose further that H and K share no common component. Then
the intersection of H and K is zero-dimensional and the number of intersection points of
H and K, counted with multiplicities, is d1d2.

Next, we turn f and g into plane curves. Let F (x, y, z) and G(x, y, z) denote the homoge-
nizations of f and g with respect to z. Then F and G both define projective plane curves
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of degree 2n− 1 because this is the degree of the highest degree form appearing in f and
g. Lemmas 2.2.2 and 2.2.3 will show that F and G do not share a common component.
So, we can apply Bézout’s Theorem to count their intersection points.

Let q = [x : y : z] be a point in CP2. Then by Bézout’s theorem,

(2n− 1)2 =
∑

q∈V (F,G)

Iq(F,G), (2.1.5)

where Iq(F,G) denotes the intersection multiplicity of F and G at q. The definition and
properties of the intersection multiplicity of a pair of algebraic curves at a point can be
found in [37, Sec. 3, Thm. 3]. For affine points (x, y) ∈ V (f, g) we sometimes denote the
intersection multiplicity as I(x,y)(f, g) := I[x:y:1](F,G).

We just used Bézout’s theorem to count the intersection points of the plane curves defined
by F and G. However, we introducted an extraneous factor of det Σ to turn the score
equations into polynomials. We also introduced extraneous points at infinity to make the
curves projective. In the next few paragraphs, we will see how to exclude the extraneous
points.

We will show in Proposition 2.2.4 that saturating the ideal I(f, g) with det Σ corresponds
to removing only the origin from the affine variety of f and g. This in turn corresponds
to removing the point [0 : 0 : 1] from the projective variety V (F,G). Since we are only
interested in the affine intersection points of F and G outside of the origin, we split the
sum on the right-hand side of the above equation as follows:

(2n− 1)2 = I[0:0:1](F,G) +
∑

q∈V (F,G)
q /∈{[0:0:1]}∪V (F,G,z)

Iq(F,G) +
∑

q∈V (F,G,z)

Iq(F,G). (2.1.6)

The middle term of the right-hand side of (2.1.6) is exactly the degree of the saturated
ideal J = I(f, g) : 〈det Σ〉∞. Thus we can find the degree of J by computing the
intersection multiplicities of F and G at the origin and at their intersection points at
infinity. We compute the former in Section 2.3 and the latter in Section 2.4 to obtain

I[0:0:1](F,G) = (2n− 2)2 and
∑

q∈V (F,G,z)

Iq(F,G) = 2n

for generic A,B and S. Thus, by rearranging (2.1.6),∑
q∈V (F,G)

q /∈{[0:0:1]}∪V (F,G,z)

Iq(F,G) = (2n− 1)2 − (2n− 2)2 − 2n = 2n− 3,

which implies deg(J) = 2n− 3, completing the proof.

We dedicate the rest of the section to an example and an explanation of the term “generic”.
Then, Sections 2.2–2.4 will execute the above proof strategy, filling in the details.
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Example 2.1.6. In this example we use two software packages written in the numerical
computing programming language Julia [5]. The package LinearCovarianceModels.jl

[84] provides functionality to compute with linear covariance models, in particular
we can compute the ML degree of any given model. It is powered by the package
HomotopyContinuation.jl [12], which enables the user to solve systems of polynomial
equations numerically.

Let n = 3 and consider the model MA,B defined by the positive definite matrices

A =

5 1 0
1 3 −2
0 −2 6

 , B =

 1 −1 0
−1 6 −2
0 −2 1

 .

Using LinearCovarianceModels.jl we find that the maximum likelihood degree of
MA,B is 2 · 3− 3 = 3. Thus, for a generic sample covariance matrix there will be three
complex solutions to the score equations. If we take the sample covariance matrix

S =

 1 2 −2
2 6 −7
−2 −7 9


then the equations f, g from (2.1.4) for MA,B and S are

f = 12288x5 + 57600x4y + 74272x3y2 + 20172x2y3 + 1729xy4 + 37y5

−10496x4 − 33792x3y − 45484x2y2 − 7232xy3 − 513y4

and

g = 11520x5 + 37136x4y + 20172x3y2 + 3458x2y3 + 185xy4 + 3y5

−12624x4 − 9448x3y − 6480x2y2 − 528xy3 − 21y4.

We can then use HomotopyContinuation.jl to find the solutions to the system of
equations f = 0 and g = 0. The solution set consists of the origin (with multiplicity
16) and three points corresponding to the critical points of the negated log-likelihood
function:

{(0.6897, 0.1773), (0.2655+0.3071i, 0.9865− 2.4601i),

(0.2655− 0.3071i, 0.9865 + 2.4601i)}.

The number of critical points and the multiplicity at the origin are predicted by Theo-
rem 2.1.4 and Corollary 2.3.2 respectively. This fits into Equation (2.1.6) which for n = 3
becomes 52 = 16 + 3 + 6. The maximum likelihood estimate for MA,B and S is the real
point in the list above, which corresponds to the positive definite covariance matrix

Σ =

3.6257 0.5124 0
0.5124 3.1329 −1.7340

0 −1.7340 4.3154


that maximizes the log-likelihood (2.1.1).
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Properties that hold generically

The ML degree formula of Theorem 2.1.4 only applies if the matrices A,B, S from which
we generate the score equations are “generic enough”. In computations, this means using
a random number generator to generate the entries of A,B, and S, since the set of triples
which are not “generic enough” has Lebesgue measure zero. We now explain the precise
notion of genericity in classical algebraic geometry.

Let M be an algebraic variety and P a property of the points of M. We say that P(x)
holds for generic x ∈M, or holds generically on M, if there exists a non-empty Zariski
open set U of M such that P(x) holds for all x ∈ U .

Consider the case M = CN . A Zariski open set in CN is the complement of a set
V = V (f1, . . . , fk) of common zeros of a collection of polynomials f1, . . . , fk in N
variables.

Thus, to verify that some property P holds generically on CN , we first have to find such
a set V with the property that for all x, if P(x) does not hold then x ∈ V . This verifies
that P(x) holds for all x ∈ U , where U = CN \ V . We also have to verify that U is
non-empty which amounts to finding a specific element x0 such that x0 6∈ V .

Note that dimV is at most N − 1. In particular it is expected that a point x ∈ CN taken
at random (say, according to the multivariate normal distribution on R2N ) will lie in U .
This justifies the term “generic”.

Suppose that Q is another property of the points of M and we want to show that both
P(x) and Q(x) hold generically on M. Then it is enough to show separately that P(x)
holds for generic x and that Q(x) holds for generic x. This follows from the fact that
the intersection of two non-empty Zariski open sets U1, U2 is always a nonempty Zariski
open set. In practice, this means that after finding U1 and U2 it is enough to find two
separate elements x1 ∈ U1 and x2 ∈ U2 which is often easier than finding an element
x0 ∈ U1 ∩ U2.

For this chapter, the notion of a property holding generically is important for two
reasons. First it is needed for the definition of the ML degree. Indeed, the number (with
multiplicities) of solutions (x̂, ŷ) to the score equations `x(x, y) and `y(x, y) given an
empirical covariance matrix S could vary with S. Nevertheless it is constant for generic
S, which justifies the use of a single number. Second we consider a family of models
MA,B parametrized by pairs of symmetric matrices (A,B) and compute its ML degree
only for generic A,B. To perform the computation, we use several properties that hold
for generic A,B, and S. The fact that these properties hold generically is first proved
separately for each one of them. Then, we use that generically all of them hold at the
same time, as explained above.
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2.2. Geometry of the score equations

In this section, we use Bézout’s Theorem to derive a formula for computing the maximum
likelihood degree of a generic MA,B. We will use Euler’s homogeneous function theorem
[32, Part I, § 222], which says that if H(x, y) is a homogeneous function of degree m, then
mH = xHx+yHy. We also use the fact that if H(x, y) is a homogeneous polynomial over
C, then H factors as a product of linear forms. This follows by applying the fundamental
theorem of algebra to the polynomial H(x, 1). We further note that a generic such H
factors as a product of distinct linear forms, since having a double root is a closed
condition on the space of coefficients of a polynomial [70, Sec. 0.12].

We will use the following lemma throughout the rest of the chapter to prove claims of
the form “the property P holds generically”.

Lemma 2.2.1. For generic A,B and S, the following projective varieties are empty:

(1) V (P, Px), V (P, T ), V (P, Py)

(2) V (Px, Py)

(3) V (Px, Tx), V (Py, Ty), V (T, Tx), V (T, Ty)

Proof. The emptiness of the varieties in the statement is an open condition in the space
of parameters

A := {(A,B, S) | A,B, S ∈ C(n+1
2 )}.

For instance, the subset of A where V (P, Px) is non-empty is the image of the variety
defined by P and Px in the space A× P1

[x:y] under the first projection. This is a Zariski-

closed subset of the parameter space by the projective elimination theorem [24, Ch. 8.5].

To show that the projective varieties in the statement are empty, we show that the
polynomials defining them have no common factors.

First, consider the case where A is the n× n identity matrix, B is the diagonal matrix
with diagonal entries 1, . . . , n, and S = uuT where u is the vector of all ones. We have

P =
n∏
k=1

(x+ ky) and Px =
n∑
k=1

∏
j 6=k

(x+ jy).

From this we deduce that if p = x+ ky is a linear form that divides P , then it does not
divide Px. This shows that V (P, Px) is empty. The variety V (P, T ) is empty as well since
Px = T in this case. We can show that V (P, Py) is empty in a similar way.

Euler’s homogeneous function theorem applied to P says that nP = xPx + yPy. Since
V (P, Px) is generically empty, the same holds for V (Px, Py).

25



To prove the rest of the statements, we switch to an element (A,B, S) that makes the
form of T particularly simple. This is allowed when combining generic properties as
explained at the end of Section 2.1.

Let A and B be as before and u = (1, 0, . . . , 0). In this case we have

T =
∏
k 6=1

(x+ ky) and Px = T + (x+ y)Tx.

Assume p divides Px and Tx. Then p divides T , hence we may assume p = x+ ky with
k 6= 1. However, we have p - Px as before. This contradiction shows that V (Px, Tx) is
empty. Similarly, V (Py, Ty) is empty. This example also has T with no common roots,
hence V (T, Tx) and V (T, Ty) are generically empty.

Now we will show that the projective curves defined by F and G satisfy the hypothesis
of Bézout’s theorem; that is, that they do not share a common component. This justifies
our application of Bézout’s theorem and allows us to count the points in their variety. To
prove this, we show that the polynomials f and g in (2.1.4) generically are irreducible
and do not share a common factor.

Lemma 2.2.2. The polynomials f and g in (2.1.4) are irreducible for generic A,B and S.

Proof. We prove the statement for f . The proof for g is analogous. We start by writing
f = F2n−1 + F2n−2, where

F2n−1 = PPx and F2n−2 = PTx − TPx.

If f decomposes into a product of two polynomials, then at least one of them is homoge-
neous and we call it h. Indeed, otherwise the degrees of F2n−1 and F2n−2 would be at
least two apart, when in fact they differ by one. Since h is homogeneous and divides a
nonzero sum of homogeneous polynomials, h divides each of the summands F2n−1 and
F2n−2. Let h0 be a linear factor of h. Since h0 divides F2n−1 and is irreducible, h0 divides
P or Px. In the first case, since h0 divides F2n−2, it would have to divide either T or Px.
This would imply that one of the projective varieties V (P, T ) and V (P, Px) is nonempty.
By Lemma 2.2.1 this does not happen generically. In the second case, it would have to
divide either P or Tx, which for the same reason does not happen generically.

Lemma 2.2.3. For generic A, B and S, the polynomials f and g in (2.1.4) are not
constant multiples of one another.

Proof. If f and g are constant multiples of each other, then so are their highest degree
terms PPx and PPy. This does not happen generically since by Lemma 2.2.1 the projective
variety V (Px, Py) is generically empty.
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Furthermore, we can describe exactly which points are removed from the affine variety
V (f, g) after we saturate with the determinant. For generic parameters, the only point
that is removed after saturation is the origin.

Proposition 2.2.4. For generic A, B and S, we have

V (f, g) \ V (det Σ) = V (f, g) \ {(0, 0)}.

Proof. Let q ∈ V (P, f, g). Then f(q) = −T (q)Px(q) and g(q) = −T (q)Py(q). In order to
have f(q) = g(q) = 0, we must either have both Px(q) = Py(q) = 0 or T (q) = 0. By
Lemma 2.2.1, for generic A,B and S, both of these imply q = (0, 0).

Proposition 2.2.5. For generic A and B, the ML-degree of the model MA,B is

(2n− 1)2 − I[0:0:1](F,G)−
∑

q∈V (F,G,z)

Iq(F,G).

Proof. The ML degree of MA,B is the degree of the ideal J = 〈f, g〉 : (det Σ)∞. The
finite set V (J) in the projective plane can be written as

V (F,G) \ (V (F,G, z) ∪ V (det Σ)).

By Bézout’s Theorem (Theorem 2.1.5), Lemmas 2.2.2 and 2.2.3 imply that the variety
V (F,G) is zero-dimensional. Using Proposition 2.2.4 we have

deg(J) =
∑

q∈V (F,G)
q /∈{[0:0:1]}∪V (F,G,z)

Iq(F,G)

=
∑

q∈V (F,G)

Iq(F,G)− I[0:0:1](F,G)−
∑

q∈V (F,G,z)

Iq(F,G).

Both F and G have degree 2n− 1. Applying Theorem 2.1.5 to F and G gives the desired
equality.

2.3. Multiplicity at the origin

In this section we compute the intersection multiplicity of the polynomials f, g in (2.1.4)
at the origin, denoted by I[0:0:1](F,G) and also I(0,0)(f, g).

For a polynomial in two variables h there is a notion of multiplicity of h at the origin,
denoted m(0,0)(h). This is the degree of the lowest-degree summand in the decomposition
of h as a sum of homogeneous polynomials (for details, see [37, Sec. 3.1]). Since the
polynomials f, g can be written as the sum of a homogeneous degree 2n− 2 form with a
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homogeneous degree 2n− 1 form, we have m(0,0)(f) = m(0,0)(g) = 2n− 2. We have the
identity

I(0,0)(f, g) = m(0,0)(f) ·m(0,0)(g) (2.3.1)

if the lowest-degree homogeneous forms of f and g share no common factors [37, Sec. 3.3].
The degree 2n−2 parts of f and g are Q = PTx−TPx and R = PTy−TPy, respectively.

Proposition 2.3.1. For generic A, B and S, the polynomials Q and R share no common
factor.

Proof. By the definition of Q and R and two applications of Euler’s homogeneous function
theorem we have

xQ+ yR = (xTx + yTy)P − (xPx + yPy)T

= (2n− 2)TP − (2n− 1)PT

= −PT.

Assume that Q and R share a common factor p, which we may assume is irreducible.
Then p divides PT . So p divides P or p divides T , but not both by Lemma 2.2.1. If p
divides P , then since Q = PTx−TPx and p is a factor of Q, p also divides TPx. Similarly
if p divides T , then p also divides PTx. But then either P and TPx share a common factor,
or T and PTx do. Each of the resulting four further cases does not occur generically by
Lemma 2.2.1.

Corollary 2.3.2. For generic A,B and S, the intersection multiplicity of f and g at the
origin is (2n− 2)2.

Proof. By Proposition 2.3.1, this follows from (2.3.1).

2.4. Multiplicity at infinity and ML degree

In this section we compute the intersection multiplicity at a point at infinity for the
curves V (f) and V (g) defined by the polynomials in (2.1.4) for generic A,B and S. To
do this we use the connection between the intersection multiplicity of curves and their
series expansions about an intersection point.

Consider an irreducible polynomial h in two variables with h(0, 0) = 0 and hy(0, 0) 6= 0.
By [35, Sec. 7.11, Cor. 2], there exists an infinite series α =

∑∞
m=1 amt

m and an open
neighborhood U ⊂ C containing t = 0 such that h(t, α(t)) = 0 for all t ∈ U . The series α
is called the series expansion of h at the origin. The valuation of a series is the number
M such that aM 6= 0 and am = 0 for all m < M .
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Proposition 2.4.1. Let h and k be irreducible polynomials in two variables such that h
and k vanish at (0, 0) and hy and ky do not. Let α and β be infinite series expansions of
h resp. k at (0, 0). The intersection multiplicity I(0,0)(h, k) is the valuation of the series
α− β.

Proof. By [35, Sec. 8.7], the intersection multiplicity of h and k at (0, 0) is the valuation
of the infinite series h(t, β(t)). We prove that this is the same as the valuation of α− β.
First, let s(t) =

∑∞
m=1 smt

m be any infinite series and write h =
∑

i,j ci,jx
iyj , where the

sum ranges over the pairs (i, j) with 0 < i+ j ≤ deg(h). We have

h(t, s(t)) =
∑
i,j

ci,jt
i

( ∞∑
m=1

smt
m

)j
=
∑
i,j

ci,jt
i

 ∞∑
ν=0

∑
|a|=ν

sa1 · · · saj

 tν


=
∑
i,j

∞∑
ν=0

∑
|a|=ν

ci,jsa1 · · · saj tν+i,

The coefficient rm of tm in this infinite series is a finite sum of products of the form
ci,jsa1 · · · saj with aj ≤ m and |a|+ i = m. The term sm only appears in rm when j = 1
and i = 0. Hence, we have rm = c0,1sm + p(s1, . . . , sm−1) for some polynomial p, where
c0,1 6= 0 since hy(0, 0) 6= 0. For example, the coefficient r0 is zero since h, k vanishing at
the origin implies that c0,0 and s0 are zero, and the coefficient of the first non-zero term
is given by r1 = c0,1s1 + c1,0.

Write α(t) =
∑∞

m=1 amt
m and β(t) =

∑∞
m=1 bmt

m. Suppose that the valuation of the
series α − β is M . Then aM 6= bM and am = bm for all m < M . We show that this
is equivalent to h(t, β(t)) =

∑∞
m=1 rmt

m having valuation M . Suppose that M = 1;
then a1 6= b1. Since h(t, α(t)) is identically zero in a neighborhood of t = 0, we have
rm(a1, . . . , am) = 0 for all m. In particular r1(a1) = c0,1a1 + c1,0 = 0. Since a1 6= b1
this implies that r1(b1) = c0,1b1 + c1,0 6= 0 and h(t, β(t)) has valuation one. Similarly
if h(t, β(t)) has valuation one, then r1(a1) 6= r1(b1) implying a1 6= b1. Thus α − β has
valuation one if and only if h(t, β(t)) has valuation one.

Now suppose M > 1. By the form of rm it now follows from an inductive argument on m
that am and bm agree up to m = M and differ at m = M + 1 if and only if rm(a1, . . . , am)
and rm(b1, . . . , bm) agree up to m = M and differ at m = M+1. Since rm(a1, . . . , am) = 0
for all m, the latter is equivalent to h(t, β(t)) having valuation M .

Remark 2.4.2. In the context of Proposition 2.4.1, consider instead polynomials h and k
defining the curves X resp. Y such that X and Y meet at a non-singular point q. Also, let
v be a vector such that the directional derivatives hv and kv do not vanish at q. Choose
an affine-linear transformation ϕ : C2 → C2 sending (0, 0) to q and (0, 1) to v. Then
Iq(h, k) = I(0,0)(h ◦ ϕ, k ◦ ϕ) and the polynomials h ◦ ϕ, k ◦ ϕ satisfy the hypotheses of
Proposition 2.4.1. Thus we can compute the intersection multiplicity at any non-singular
intersection point of h, k using Proposition 2.4.1.
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Remark 2.4.3. When the series α−β has valuation M , we say that h and k have contact
order or order of tangency M − 1 at q. Therefore the contact order of two curves at
an intersection point is always one less than the intersection multiplicity. For more on
contact order of algebraic curves see [74, Ch. 5].

Remark 2.4.4. The fact that the curves X and Y have intersection multiplicity one at q
if and only if the gradients of h and k at q are linearly independent (see e.g. [37, Sec. 3.3])
arises as a special case of Proposition 2.4.1 once we compute the first terms of the series
α and β.

Returning to the expressions in (2.1.4), recall that F and G denote the homogenizations
of f and g with respect to the new variable z. The intersection points of V (f) and V (g)
at infinity are exactly the variety V (F,G, z).

Lemma 2.4.5. For generic A, B and S, the projective variety V (F,G, z) consists of n
points of the form [q1 : q2 : 0] such that P (q1, q2) = 0.

Proof. Let q = [q1 : q2 : 0] be a projective point of V (F,G). We have

F = PPx + z(PTx − TPx)

G = PPy + z(PTy − TPy),

and hence V (F,G, z) consists of points q where [q1 : q2] ∈ V (PPx, PPy). Clearly if
P (q1, q2) = 0, then q ∈ V (F,G, z). These are the only such points since, by Lemma 2.2.1,
for generic A,B and S the variety V (Px, Py) is empty. The homogeneous binary form
P (x, y) factors in n linear forms. These forms are distinct, since a repeated factor would
divide both P and Px, while V (P, Px) is empty by Lemma 2.2.1. Thus there are n distinct
points in V (F,G, z).

Lemma 2.4.6. For generic A,B and S, the projective variety V (P, PyTx − PxTy) is
empty.

Proof. Let H = PyTx − PxTy. By applying Euler’s homogeneous function theorem twice
in the following chain of equalities, we have

nTxP − yH = Tx(nP − yPy) + yPxTy = Px(yTy + xTx) = (n− 1)PxT.

If P and H have an irreducible common factor p, then p | PxT . This does not happen
generically by Lemma 2.2.1.

Lemma 2.4.7. For generic A,B and S, if q ∈ V (F,G, z) then Iq(F,G) = 2.

Proof. By Lemma 2.4.5, such points are of the form q = [q1 : q2 : 0] where P (q1, q2) = 0.
Fix such a point q and assume for simplicity that q1 6= 0. This is not a restriction since
the conditions q1 = 0 and P (q) = 0 imply det(B) = 0 which is a closed condition on the
parameter space. Thus we can assume q is of the form [1 : q2 : 0].
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Since intersection multiplicity at a point is a local quantity, we may dehomogenize with
respect to x and consider the intersection multiplicity of the affine curves V (F (1, y, z))
and V (G(1, y, z)) at q. We can compute the partial derivatives with respect to y and z:

Fy(x, y, z) = PyPx + PPxy + z

(
d

dy
(PTx − TPx)

)
, Fz(x, y, z) = PTx − TPx,

Gy(x, y, z) = P 2
y + PPyy + z

(
d

dy
(PTy − TPy)

)
, Gz(x, y, z) = PTy − TPy. (2.4.1)

Consider the polynomials obtained by translating q to [1 : 0 : 0] given by F̃ = F (1, y+q2, z)
and G̃ = G(1, y+q2, z). Then F̃z(1 : 0 : 0), G̃z(1 : 0 : 0) 6= 0 if and only if Fz(q), Gz(q) 6= 0,
and from (2.4.1), we have that

Fz(q) = (−TPx)(1, q2) and Gz(q) = (−TPy)(1, q2).

Since P (1, q2) = 0, Lemma 2.2.1 implies that Fz(q), Gz(q) 6= 0. Thus there exist series
expansions α =

∑∞
m=1 amt

m and β =
∑∞

m=1 bmt
m such that, for all t in a neighborhood

of t = 0,

F̃

(
1, t,

∞∑
m=1

amt
m

)
= 0 and G̃

(
1, t,

∞∑
m=1

bmt
m

)
= 0,

and hence

F

(
1, t+ q2,

∞∑
m=1

amt
m

)
= 0 and G

(
1, t+ q2,

∞∑
m=1

amt
m

)
= 0, (2.4.2)

in the same neighborhood. Since I[1:0:0](F̃ , G̃) = Iq(F,G), by Proposition 2.4.1 we can
compute the valuation of the series α − β to determine Iq(F,G). Differentiating the
expressions in (2.4.2) with respect to t, then substituting t = 0 yields

Fy(q) + Fz(q)a1 = 0 and Gy(q) +Gz(q)b1 = 0.

Thus a1 =
−Fy(q)
Fz(q) and b1 =

−Gy(q)
Gz(q) , and (FyGz − FzGy)(q) = 0 implies that a1 − b1 = 0.

By differentiating (2.4.2) twice with respect to t and substituting these values for a1 and
b1, we can similarly show that

a2 =

(
−FyyF 2

z + 2FyzFyFz − FzzF 2
y

2F 3
z

)∣∣∣∣∣
q

b2 =

(
−GyyG2

z + 2GyzGyGz −GzzG2
y

2G3
z

)∣∣∣∣∣
q

. (2.4.3)

Since we know that a1 − b1 = 0, the valuation is at least two. We now show that the
valuation of α− β =

∑∞
m=1(am − bm)tm is exactly two for generic A, B and S. We can

verify that a2 − b2 6= 0 with the help of the computer algebra system Maple [64] by the
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following steps. First, compute all second-order derivatives of F and G with respect to
y and z in terms of partial derivatives of P and T , by differentiating the expressions
in (2.4.1). Then, substitute P = 0 and z = 0 in these expressions, which corresponds
to evaluation at q. Thus from (2.4.3) we obtain expressions for a2 and b2 evaluated at
q in terms of partial derivatives of P and T . Next, clear denominators in the resulting
expression for a2 − b2, which yields

(a2 − b2)(q) = (T 4P 2
xP

4
y (PyTx − PxTy))(1, q2).

Since P (1, q2) = 0, this expression does not generically evaluate to 0 by Lemmas 2.2.1
and 2.4.6.

Corollary 2.4.8. For generic A,B and S, we have
∑

q∈V (F,G,z) Iq(F,G) = 2n.

Proof. This follows from Lemmas 2.4.5 and 2.4.7.

Now we can prove the main result that deg(J) = 2n− 3:

Proof of Theorem 2.1.4. Combining Proposition 2.2.5 with Corollaries 2.3.2 and 2.4.8
shows that the ML-degree of MA,B for generic A and B is

(2n− 1)2 − (2n− 2)2 − 2n = 2n− 3.

2.5. Higher dimensions

In [82], Sturmfels, Timme and Zwiernik use numerical algebraic geometry methods
implemented in the Julia package LinearGaussianCovariance.jl to compute the ML
degrees of linear Gaussian covariance models for several values of n and m, where n is
the size of the covariance matrix and m is the dimension of model. In this chapter we
proved that for m = 2 and arbitrary n, the ML degree is 2n− 3, which agrees with the
computations in Table 1 of [82].

For higher dimensional linear spaces, where m > 2, the score equations consist of the
partial derivatives of ˜̀ with respect to the m parameters of the linear space. Again, in
this case, these are rational functions of the data and the parameters. For instance when
m = 3, we can consider the linear span of three n × n matrices A,B, and C. Then if
Σ = xA+ yB + zC, P = det Σ and T = tr(S adj Σ), the score equations are

˜̀
x(x, y, z) =

Px
P

+
PTx − TPx

P 2

˜̀
y(x, y, z) =

Py
P

+
PTy − TPy

P 2

˜̀
z(x, y, z) =

Pz
P

+
PTz − TPz

P 2
,

32



and we can similarly define polynomials

f(x, y, z) := PPx + PTx − TPx
g(x, y, z) := PPy + PTy − TPy
h(x, y, z) := PPz + PTz − TPz,

such that the ML-degree of the model is the degree of J = I(f, g, h) : 〈det Σ〉∞. The
authors of [82] conjecture that the ML-degree in this case is 3n2 − 9n+ 7. To prove this
conjecture as we did for m = 2, one might turn to a higher dimensional generalization
of Bézout’s Theorem, which says that the number of solutions to V (f, g, h) counted
with multiplicity is the product deg(f) deg(g) deg(h) provided that V (f, g, h) is zero-
dimensional (see for example [23, Sec. 3, Ch. 3] or [77, Sec. 2.1, Ch. 3]). This zero-
dimensionality restriction is necessary for equality, otherwise the product of the degrees
in this case simply gives an upper bound for the number of zero-dimensional solutions
counted with multiplicity [36, Thm. 12.3].

Indeed the variety V (f, g, h) contains the one-dimensional affine variety V (P, T ) as well
as a “curve at infinity” corresponding to the vanishing of P . When m = 2, the variety
V (P, T ) ⊂ C2 consisted of only the origin and the elements at infinity were points whose
multiplicity we could calculate using properties of curves. This illustrates the added
difficulties in counting solutions when moving from planar intersection theory to higher
dimensional intersections.

The authors of [82] also consider the generic diagonal model, in which the linear space
that comprises the model consists of diagonal matrices. Their computations show that
for m = 2, the ML degree of the generic diagonal model for the first several values of n is
also 2n−3, see [82, Table 2]. It follows from the proof of our result that this ML-degree is
indeed 2n− 3 for all n, as the witnesses for the non-emptiness of the open dense sets that
we saw in the proof of Lemma 2.2.1 were all diagonal matrices. For m > 2 and n > 3, the
ML-degree of the generic diagonal model is conjectured in [82] to be strictly less than the
corresponding generic linear Gaussian covariance model. This suggests that the study of
linear Gaussian covariance models of arbitrary dimension will require us to look beyond
diagonal matrices as witnesses to the non-triviality of some open conditions.

Indeed, many of the projective varieties in Lemma 2.2.1 are nonempty for diagonal
matrices when m > 2. For example, when m ≥ 3, the determinant of P for a diagonal Σ
has a nonempty singular locus. Let m = 3 and let

Σ = xA+ yB + zC

where A, B, and C are the diagonal matrices with diagonal entries (a1, . . . , an), (b1, . . . , bn)
and (c1, . . . , cn), respectively. Then we have

P =
n∏
i=1

(aix+ biy + ciz).
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The derivatives of P are of the form

Px =
n∑
i=1

ai

n∏
j=1
j 6=i

(ajx+ bjy + cjz),

and similarly for Py and Pz. So any projective point in the intersection of linear spaces
of the form

V (aix+ biy + ciz) ∩ V (ajx+ bjy + cjz)

for i 6= j is a singular point of P . When m > 2, these intersections are nonempty, so such
singular points exist.

Thus, when Σ is not defined by diagonal matrices, the problem of finding witnesses to
the emptiness of the varieties in Lemma 2.2.1 for arbitrary n is more difficult, which adds
another layer of difficulty for establishing the ML degree when m > 2. Nevertheless we
believe that examining the structure of the score equations for m = 2 provides a possible
blueprint for approaching the problem for m > 2, although it will require different tools
from intersection theory.

For the purposes of statistical inference, we are most interested in real solutions to the
score equations, as these are the ones that may have statistical meaning. Furthermore, it
would be nice to understand whether there are truly 2n− 3 distinct (complex) solutions
to the score equations, as opposed to some having higher multiplicity.

Open problems. Regarding the m = 2 case, we still have the following open questions.

(1) How many real solutions can the score equations of a generic two-dimensional linear
Gaussian covariance model have?

(2) From experiments done so far, it seems that the score equations of a generic two-
dimensional linear Gaussian covariance models always has 2n− 3 distinct complex
solutions. Is this true?

34



3. Discrete models with rational MLE

Likelihood inference is a fundamental problem to many applications. For instance para-
metric statistics makes inferences about model parameters of interest. In this context, the
notion of the maximum likelihood estimator (MLE) for that set of parameters is central.
The MLE is the best guess for the true value of the parameters given the available data.
See for instance the textbook [16] for background and examples.

Let M ⊆ ∆n be a discrete statistical model. In this chapter, we take its maximum
likelihood estimator, if it exists, to be a function Φ: ∆n → M. The MLE Φ takes an
empirical distribution p to a distribution p̂ which is best in the sense of likelihood inference.
That is, it maximizes the value of of the log-likelihood function (1.1.2).

This general notion of the MLE of a model makes it possible for two fields at the crossroads
of mathematics and data science to study its properties. Information Geometry [3] views
the MLE as the nearest point map with respect to the Kullback-Leibler divergence, whose
second derivative defines a Riemannian metric on ∆n called the Fisher metric. Algebraic
Statistics as in [27,83], on the other hand, is concerned with models M whose MLE Φ is
an algebraic function of u.

The question that we address in this chapter is: For which models M is the MLE Φ a
rational function in the empirical distribution p? Having a rational MLE means not only
that we have a closed formula for computing maximum likelihood estimates. It is also
the simplest possible such formula. Hence, it is desirable to know exactly for which kind
of model such a formula exists.

Example 1.1.1 is one such model, well-known to both fields. It belongs to the class of
graphical models, a broad class of modelsMG associated to graphs G that may be directed
or undirected. In fact, all directed graphical models and all undirected decomposable
graphical models have rational MLE. The book [55] provides proofs of these facts and
more background on graphical models. In these cases, the structure of the MLE formula
can be read from the graph G used to define the model. As indicated in Section 1.3,
such an MLE formula is not only a rational function of the data but decomposes into an
alternating product of linear forms, in a way that can again be read from G.

This chapter characterizes all discrete models with rational MLE. To do this, we need
to introduce a considerable amount of terminology. In order to help the reader follow
along, we start with the punchline by stating the main result (Theorem 3.1.1) right at the
beginning of Section 3.1. The remainder of that section then defines all terms appearing in
the theorem statement and presents many examples to illustrate it. Section 3.2 discusses
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models with rational MLE that are familiar to statisticians, such as decomposable
graphical models and Bayesian networks. The focus lies on staged tree models, a far-
reaching generalization of discrete Bayesian networks, described in the book by Collazo,
Görgen and Smith [20]. We will see how the main result applies to these models. Then
Section 3.3 presents the proof of Theorem 3.1.1. This is the technical heart of this chapter,
building on the likelihood geometry of [47, §3]. Section 3.4 discusses the connection to
toric geometry and geometric modeling developed by Clarke and Cox [19]. Section 3.5
presents an algorithm for constructing models with rational MLE, and discusses its
implementation and some experiments. The input is an integer matrix representing a
toric variety, and the output is a list of models derived from that matrix. Our results
suggest that only a very small fraction of Huh’s varieties in [46] are statistical models.

In the following sections we will use notation and concepts from toric geometry. The
toric variety associated to an integer matrix A by a polynomial parametrization is
denoted by YA. Its dual toric variety is Y ∗A. There will also be an associated discriminant-
like polynomial, denoted ∆ or ∆A. In contrast, for a natural number n, the notation
∆n still indicates the probability n-simplex. A background in toric geometry is not
necessary to understand this chapter. The interested reader is nevertheless referred to
the textbook [25].

3.1. How to be rational

LetM be a discrete statistical model in the open simplex ∆n with a well-defined maximum
likelihood estimator Φ : ∆n →M. We also write Φ : Rn+1

>0 →M for the induced map
u 7→ Φ(u/|u|) on positive integer vectors u. In general, in this chapter we often deal with
empirical distributions p and positive integer data vectors u interchangeably. If the n+ 1
coordinates of Φ are rational functions in u, then we say that M has rational MLE. The
following is our main result.

Theorem 3.1.1. The following are equivalent for the statistical model M with MLE Φ:

(1) The model M has rational MLE.

(2) There exists a Horn pair (H,λ) such that M is the image of the Horn map

ϕ(H,λ) : Rn+1
>0 → Rn+1

>0 .

(3) There exists a discriminantal triple (A,∆,m) such that M is the image un-
der the monomial map φ(∆,m) of precisely one orthant (3.1.9) of the dual toric
variety Y ∗A.

If (1)–(3) are true then the MLE of the model satisfies the following relation on the open
orthant Rn+1

>0 :
Φ = ϕ(H,λ) = φ(∆,m) ◦H. (3.1.1)
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This theorem is relevant to statistics because it reveals when a model has an MLE of the
simplest possible closed form. Property (2) says that the polynomials appearing in the
numerators and denominators of the rational formulas must factor into linear forms with
positive coefficients. Property (3) offers a recipe, based on toric geometry, for explicitly
constructing all such models. The advance over [46] is that Theorem 3.1.1 deals with
positive real numbers. This adaptation is essential for using Huh’s result in statistics.

The goal of this section is to define all the terms seen in parts (2) and (3) of Theo-
rem 3.1.1.

Example 3.1.2. We first discuss Theorem 3.1.1 for a simple experiment: Flip a biased
coin. If it shows heads, flip it again. This is the model with n = 2 given by the tree
diagram

s0

s1

s0

s1

p0

p1

p2.

The modelM is a curve in the probability triangle ∆2. The tree shows its parametrization

∆1 → ∆2 , (s0, s1) 7→ (s2
0, s0s1, s1) where s0, s1 > 0 and s0 + s1 = 1.

The implicit representation of the curve M is the equation p0p2 − (p0 + p1)p1 = 0. Let
(u0, u1, u2) be the counts from repeated experiments. A total of 2u0 + 2u1 +u2 coin tosses
were made. We estimate the parameters as the empirical frequency of heads resp. tails:

ŝ0 =
2u0 + u1

2u0 + 2u1 + u2
and ŝ1 =

u1 + u2

2u0 + 2u1 + u2
.

The MLE is the retraction from the triangle ∆2 to the curve M given by the formula

Φ(u0, u1, u2) = (ŝ2
0, ŝ0ŝ1, ŝ1)

=

(
(2u0 + u1)2

(2u0+2u1+u2)2
,

(2u0+u1)(u1+u2)

(2u0 + 2u1 + u2)2
,

u1 + u2

2u0+2u1+u2

)
.

Hence M has rational MLE. We see that the Horn pair from part (2) in Theorem 3.1.1
has

H =

 2 1 0
0 1 1
−2 −2 −1

 and λ = (1, 1,−1).

We next exhibit the discriminantal triple (A,∆,m) in part (3) of Theorem 3.1.1. The
matrix A =

(
1 1 1

)
gives a basis of the left kernel of H. The second entry is the

polynomial

∆ = x2
3 − x2

1 − x1x2 + x2x3 = (x3 − x1)(x1 + x2 + x3). (3.1.2)
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The third entry marks the leading term m = x2
3. The discriminantal triple defines the

monomial map

φ(∆,m) : (x1, x2, x3) 7→
(
x2

1

x2
3

,
x1x2

x2
3

,−x2

x3

)
.

The toric variety of the matrix A is the point YA = {(1 : 1 : 1)} in P2. Our polynomial
∆ vanishes on the line Y ∗A = {x1 + x2 + x3 = 0} that is dual to YA. The relevant
orthant is the open line segment Y ∗A,σ := {(x1 : x2 : x3) ∈ Y ∗A : x1, x2 > 0 and x3 < 0}.
Part (3) in Theorem 3.1.1 says that M is the image of Y ∗A,σ under φ(∆,m). The MLE is
Φ = φ(∆,m) ◦H.

We now come to the definitions needed for Theorem 3.1.1. Let H = (hij) be an m× (n+1)
integer matrix whose columns sum to zero, i.e.

∑m
i=1 hij = 0 for j = 0, . . . , n. We call

such a matrix a Horn matrix and denote its columns by h0, h1, . . . , hn. The following
alternating products of linear forms are rational functions of degree zero:

(Hu)hj :=
m∏
i=1

(
hi0u0 + hi1u1 + · · ·+ hinun

)hij for j = 0, 1, . . . , n.

The Horn matrix H is friendly if there exists a real vector λ = (λ0, . . . , λn) with λi 6= 0 for
all i such that the following identity holds in the rational function field R(u0, u1, . . . , un):

λ0(Hu)h0 + λ1(Hu)h1 + · · ·+ λn(Hu)hn = 1. (3.1.3)

If this holds, then we call (H,λ) a friendly pair, and we consider the rational function

Rn+1 → Rn+1, u 7→
(
λ0(Hu)h0 , λ1(Hu)h1 , . . . , λn(Hu)hn

)
. (3.1.4)

The friendly pair (H,λ) is called a Horn pair if the function (3.1.4) is defined for all
positive vectors and if it maps these to positive vectors. If these conditions hold then we
write ϕ(H,λ) : Rn+1

>0 → Rn+1
>0 for the restriction of (3.1.4) to the positive orthant. We

call ϕ(H,λ) the Horn map associated to the Horn pair (H,λ).

The difference between our Horn pairs and the more general pairs considered by Huh in [46]
is the positivity condition we just introduced, along with the “friendliness” condition.
These conditions guarantee that the image of the Horn map lies in the probability simplex,
which is necessary for its interpretation as a statistical model. They also imply special
properties for the Horn pair, see Propositions 3.3.2 and 3.3.3 in Section 3.3. The examples
in Section 3.5 show that only a fraction of Huh’s pairs (H,λ) are Horn pairs.

Different Horn pairs may give rise to the same Horn map. For example, the Horn pair

H ′ =


0 2 2
2 1 0
0 −1 −1
−2 −2 −1

 and λ′ =

(
1,−1

4
,
1

4

)
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also gives the map in Example 3.1.2. This is because the first and third rows of H ′

are collinear, causing the cancellation of linear factors in the Horn map. Following [19],
a Horn pair (H,λ) is minimal if the matrix H has no zero rows and no pair of collinear
rows.

Lemma 3.1.3. Let (H ′, λ′) be a Horn pair arising from the Horn pair (H,λ) by replacing
two collinear rows rk and r` in H such that r` = µrk with their sum rk + r` and setting

λ′j =
λjµ

µ·hkj

(1 + µ)(1+µ)hkj
for all j = 0, . . . , n.

Then the Horn maps ϕ(H′,λ′) and ϕ(H,λ) are equal.

Proof. Let wk and w` be the linear forms associated to the rows rk and r` respectively. Fix
a column index j. We have w` = µwk and h`j = µhkj . The factors of the j-th coordinates
of the Horn maps ϕ(H,λ) and ϕ(H′,λ′) that have changed after the operation are

λjw
hkj
k w

h`j
` = λjµ

µ·hkjw
(1+µ)hkj
k for (H,λ) and

λ′j(wk + w`)
(1+µ)hkj = λ′j(1 + µ)(1+µ)hkjw

(1+µ)hkj
k for (H ′, λ′).

Equating these two gives the desired formula.

Every Horn map is represented by a unique minimal Horn pair. To make a Horn pair
minimal, while retaining the Horn map, we can use Lemma 3.1.3 repeatedly, deleting
zero rows as they appear. This follows by unique factorization, see also [19, Prop. 6.11].

Example 3.1.4. We illustrate the equivalence of (1) and (2) in Theorem 3.1.1 for the
model described in [47, Expl. 3.11]. Here n = 3 and m = 4 and the Horn matrix equals

H =


−1 −1 −2 −2

1 0 3 2
1 3 0 2
−1 −2 −1 −2

 . (3.1.5)

This Horn matrix is friendly because the following vector satisfies the identity (3.1.3):

λ = (λ0, λ1, λ2, λ3) =

(
2

3
, − 4

27
, − 4

27
,

1

27

)
. (3.1.6)

The pair (H,λ) is a Horn pair, with associated Horn map

ϕ(H,λ) : R4
>0 → R4

>0 ,


u0

u1

u2

u3

 7→


2(u0+3u2+2u3)(u0+3u1+2u3)
3(u0+u1+2u2+2u3)(u0+2u1+u2+2u3)

4(u0+3u1+2u3)3

27(u0+u1+2u2+2u3)(u0+2u1+u2+2u3)2

4(u0+3u2+2u3)3

27(u0+u1+2u2+2u3)2(u0+2u1+u2+2u3)

(u0+3u2+2u3)2(u0+3u1+2u3)2

27(u0+u1+2u2+2u3)2(u0+2u1+u2+2u3)2

 . (3.1.7)
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Indeed, this rational function takes positive vectors to positive vectors. The image of the
map ϕ(H,λ) is a subsetM of the tetrahedron ∆3 = {p ∈ R4

>0 : p0 + p1 + p2 + p3 = 1}. We
regard the subset M as a discrete statistical model on the state space {0, 1, 2, 3}. The
model M is the curve of degree 4 inside ∆3 defined by the two quadratic equations

9p1p2 − 8p0p3 = p2
0 − 12p3 = 0.

As in [47, Expl. 3.11], one verifies that M has rational MLE, namely Φ = ϕ(H,λ).

We next define all the terms used in part (3) of Theorem 3.1.1. Fix a matrix A ∈ Zr×m of
rank r with entries (aij) that has the vector (1, . . . , 1) in its row span. The connection to
part (2) of Theorem 3.1.1 will be that the rows of A span the left kernel of H. We identify
the columns of A with Laurent monomials in r unknowns t1, . . . , tr. The associated
monomial map is

γA : (R∗)r → RPm−1 , (t1, . . . , tr) 7→
( r∏
i=1

tai1i :
r∏
i=1

tai2i : · · · :
r∏
i=1

taimi

)
. (3.1.8)

Here R∗ = R\{0} and RPm−1 denotes the real projective space of dimension m− 1. Let
YA be the closure of the image of γA. This is the projective toric variety given by A.

Every point x = (x1 : · · · : xm) in the dual projective space (RPm−1)∨ corresponds to a
hyperplane Hx in RPm−1. The dual variety Y ∗A to the toric variety YA is the closure of{

x ∈ (RPm−1)∨ | γ−1
A (Hx ∩ YA) is singular

}
.

Here, the term singular means that the variety γ−1
A (Hx ∩ YA) has a singular point in

(R∗)r. A general point x in Y ∗A hence corresponds to a hyperplane Hx that is tangent to
the toric variety YA at a point γA(t) with nonzero coordinates. We identify sign vectors
σ ∈ {−1,+1}m with orthants in Rm. These map in a 2-to-1 manner to orthants in RPm−1.
If we intersect them with Y ∗A, then we get the orthants of the dual toric variety:

Y ∗A,σ =
{
x ∈ Y ∗A : σi · xi > 0 for i = 1, 2, . . . ,m

}
⊂ RPm−1. (3.1.9)

One of these is the distinguished orthant in Theorem 3.1.1, part (3).

Example 3.1.5. Fix m = 4 and r = 2. The following matrix has (1, 1, 1, 1) in its row
span:

A =

(
3 2 1 0
0 1 2 3

)
. (3.1.10)

As in [47, Expl. 3.9], the toric variety of A is the twisted cubic curve in 3-space:

YA =
{

(t31 : t21t2 : t1t22 : t32) ∈ RP3 : t1, t2 ∈ R∗
}
.

The dual toric variety Y ∗A is a surface in (RP3)∨. Its points x represent planes in RP3

that are tangent to the curve YA. Such a tangent plane corresponds to a univariate cubic
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x1t
3 +x2t

2 +x3t+x4 with a double root. Just as we recognize quadrics with a double root
by the vanishing of the quadratic discriminant, a cubic with coefficients (x1, x2, x3, x4)
has a double root if and only if the following discriminant vanishes:

∆A = 27x2
1x

2
4 − 18x1x2x3x4 + 4x1x

3
3 + 4x3

2x4 − x2
2x

2
3. (3.1.11)

Hence, Y ∗A is the surface of degree 4 in (RP3)∨ defined by ∆A. All eight orthants Y ∗A,σ are
non-empty. The coefficient vectors of the following eight cubics lie on different orthants:

(t+ 1)2(t+ 3), (t+ 5)2(t− 1), (t− 1)2(t+ 3), (t+ 5)2(t− 8),
(t− 3)2(t+ 1), (t− 1)2(t− 3), (t− 2)2(t+ 3), (t+ 1)2(t− 3).

For instance, the underlined cubic corresponds to the point x = (1,−1,−8, 12) in the
orthant Y ∗A,σ associated with the sign vector σ = (+1,−1,−1,+1).

Let ∆ be a homogeneous polynomial in m variables with n+ 2 monomials and m one of
these monomials. There is a one-to-one correspondence between such pairs (∆,m) and
pairs (H,λ) where H is a Horn matrix of size m× (n+ 1) and λ is a coefficient vector.
Namely, for k = 0, . . . , n write h+

k resp. h−k for the positive resp. negative part of the
column vector hk, so that hk = h+

k − h
−
k . In addition, let maxk(h

−
k ) be the entrywise

maximum of the h−k . We pass from pairs (H,λ) to pairs (∆,m) as follows:

m = xmaxk(h−k ) and ∆ = m ·
(

1−
n∑
k=0

λkx
hk

)
. (3.1.12)

For the converse, from pairs (∆,m) to pairs (H,λ), we divide ∆ by m and use the same
equations to determine the pair (H,λ). Note that the polynomial ∆ being homogeneous
and the matrix H being a Horn matrix are equivalent conditions using the equations
(3.1.12). Given a pair (∆,m) with associated pair (H,λ), we define the monomial map

φ(∆,m) : (R∗)m → Rn+1, x 7→
(
λ0x

h0 , λ1x
h1 , . . . , λnx

hn
)
.

We now come to the definition that is needed for part (3) of Theorem 3.1.1.

Definition 3.1.6. A discriminantal triple (A,∆,m) consists of

(1) an r ×m integer matrix A of rank r having (1, 1, . . . , 1) in its row span,

(2) an A-homogeneous polynomial ∆ that vanishes on the dual toric variety Y ∗A,

(3) a distinguished term m among those that occur in the polynomial ∆,

such that the pair (H,λ) associated to (∆,m) is a Horn pair. Here, the polynomial ∆
being A-homogeneous means that Av = Aw for any two exponent vectors v and w of ∆.

All definitions are now complete. Here is Definition 3.1.6 for our running example:
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Example 3.1.7. Let A be the 2 × 4 matrix in (3.1.10), ∆ = ∆A its discriminant in
(3.1.11), and m = 27x2

1x
2
4 the special term. Then (A,∆,m) is a discriminantal triple with

associated sign vector σ = (+1,−1,−1,+1). The orthant Y ∗A,σ, highlighted in Example

3.1.5, is a semialgebraic surface in Y ∗A ⊂ RP3. This surface is mapped into the tetrahedron
∆3 by

φ(∆,m) : (x1, x2, x3, x4) 7→
(

2

3

x2x3

x1x4
,− 4

27

x3
3

x1x2
4

,− 4

27

x3
2

x2
1x4

,
1

27

x2
2x

2
3

x2
1x

2
4

)
. (3.1.13)

The image of this map is a curve in ∆3, namely the model M in Example 3.1.4. We
verify (3.1.1) by comparing (3.1.7) with (3.1.13). The former is obtained from the latter
by setting x = Hu.

3.2. Staged trees

We consider contingency tables u = (ui1i2···im) of format r1×r2×· · ·×rm. Following [27,55],
these represent joint distributions of discrete statistical models with n+ 1 = r1r2 · · · rm
states. Namely, the contingency table u represents the probability distribution p := u/|u|.
For any subset C ⊂ {1, . . . ,m}, we consider the marginal table uC that is obtained by
summing out all indices not in C. The entries of the marginal table uC are sums of entries
in u. To obtain the entry uI,C of uC for any state I = (i1, i2, . . . , im), we fix the indices
of the states in C and sum over the indices not in C. For example, if m = 4, C = {1, 3},
I = (i, j, k, l), then uC is the r1 × r3 matrix with entries

uI,C = ui+k+ =

r2∑
j=1

r4∑
l=1

uijkl.

Such linear forms are the basic building blocks for familiar models with rational MLE.

Consider an undirected graph G with vertex set {1, . . . ,m} which is assumed to be chordal.
This means that every induced cycle of G has exactly three vertices. The associated
decomposable graphical model MG in ∆n has the rational MLE

p̂I =

∏
C uI,C∏
S uI,S

, (3.2.1)

where the product in the numerator is over all maximal cliques C of G, and the product
in the denominator is over all separators S in a junction tree for G. See [55, §4.4.1]. We
shall regard G as a directed graph, with edge directions given by a perfect elimination
ordering on the vertex set {1, . . . ,m}. This turns MG into a Bayesian network. More
generally, a Bayesian networkMG is given by a directed acyclic graph G. We write pa(j)
for the set of parents of the node j. The model MG in ∆n has the rational MLE

p̂I =
m∏
j=1

uI,pa(j)∪{j}

uI,pa(j)
. (3.2.2)
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If G comes from an undirected chordal graph then (3.2.1) arises from (3.2.2) by cancella-
tions.

In the following examples we will specify small graphs by a complete list of their edges,
each written as [ij] where i and j represent two nodes of the graph.

Example 3.2.1 (m = 4). We revisit two examples from page 36 in [27, §2.1]. The star
graph G = [14][24][34] is chordal. The MLE for MG is the map Φ with coordinates

p̂ijkl =
ui++l · u+j+l · u++kl

u++++ · u2
+++l

=
ui+++

u++++
·
u+j+l

u+++l
· u++kl

u+++l
· ui++l

ui+++
.

The left expression is (3.2.1). The right is (3.2.2) for the directed graph 1→ 4, 4→ 2,
4→ 3.

The chain graph G = [12][23][34] is chordal. Its MLE is the map Φ with coordinates

p̂ijkl =
uij++ · u+jk+ · u++kl

u+j++ · u++k+ · u++++
= ϕ(H,λ)(u)ijkl.

This is the Horn map given by H as in Figure 3.2.1 and λ = (1, . . . , 1).

All Bayesian networks are special cases of staged tree models, which we introduce below.
All staged tree models have rational MLE, and under this interpretation Equation (3.2.2)
becomes a special case of a more general MLE formula for staged tree models, which is
given in Proposition 3.2.4

Staged trees were introduced by Smith and Anderson [80] as a generalization of discrete
Bayesian networks. They furnish an intuitive representation of many situations that the
above graphs G cannot capture. In spite of their wide scope, staged tree models are
appealing because of their intuitive formalism for encoding events. For an introduction
see the textbook [20]. In what follows we study parts (1) and (2) in Theorem 3.1.1 for
staged trees.

To define a staged tree model, we consider a directed rooted tree T with at least two
edges emanating from each non-leaf vertex, a label set S = {si | i ∈ I}, and a labeling
θ : E(T )→ S of the edges of the tree. Each vertex of T has a corresponding floret, which
is the multiset of edge labels emanating from it. The labeled tree T is a staged tree if
any two florets are either equal or disjoint. Two vertices in T are said to be in the same
stage if their corresponding florets are the same. From now on, F denotes the set of
florets of T .

Definition 3.2.2. Let J be the set of root-to-leaf paths in the tree T . We set |J | = n+ 1.
For i ∈ I and j ∈ J , let µij denote the number of times edge label si appears in the j-th
root-to-leaf path. The staged tree model MT is the image of the parametrization

φT : Θ→ ∆n , (si)i∈I 7→ (pj)j∈J ,

where the parameter space is Θ :=
{

(si)i∈I ∈ (0, 1)|I| |
∑

si∈f si = 1 for all f ∈ F
}

, and

pj =
∏
i∈I s

µij
i is the product of the edge parameters on the j-th root-to-leaf path.
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In the model MT , the tree T represents possible sequences of events. The parameter si
associated to an edge vv′ is the transition probability from v to v′. All parameter labels in
a floret sum to 1. The fact that distinct nodes in T can have the same floret of parameter
labels enables staged tree models to encode conditional independence statements [80].
This allows us to represent any discrete Bayesian network or decomposable model as
a staged tree model. Our first staged tree was seen in Example 3.1.2. Here is another
specimen.

Example 3.2.3 (n = 15). Consider the decomposable model for binary variables given by
the 4-chain G = [12][23][34] as in Example 3.2.1. Figure 3.2.1 shows a realization of MG

as a staged tree model MT . The leaves of T represent the outcome space {0, 1}4. Nodes
with the same color have the same associated floret. The blank nodes all have different
florets. The seven florets of T are

f1={s0, s1}, f2={s2, s3}, f3={s4, s5}, f4={s6, s7},
f5={s8, s9}, f6={s10, s11}, f7={s12, s13}.

T :

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

s13

p0000
p0001
p0010
p0011
p0100
p0101
p0110
p0111
p1000
p1001
p1010
p1011
p1100
p1101
p1110
p1111

H =

s0

s1

f1

s2

s3

f2

s4

s5

f3

s6

s7

f4

s8

s9

f5

s10

s11

f6

s12

s13

f7



1 1 1 1 1 1 1 1 · · · · · · · ·
· · · · · · · · 1 1 1 1 1 1 1 1
− − − − − − − − − − − − − − − −
1 1 1 1 · · · · · · · · · · · ·
· · · · 1 1 1 1 · · · · · · · ·
− − − − − − − − · · · · · · · ·
· · · · · · · · 1 1 1 1 · · · ·
· · · · · · · · · · · · 1 1 1 1
· · · · · · · · − − − − − − − −
1 1 · · · · · · 1 1 · · · · · ·
· · 1 1 · · · · · · 1 1 · · · ·
− − − − · · · · − − − − · · · ·
· · · · 1 1 · · · · · · 1 1 · ·
· · · · · · 1 1 · · · · · · 1 1
· · · · − − − − · · · · − − − −
1 · · · 1 · · · 1 · · · 1 · · ·
· 1 · · · 1 · · · 1 · · · 1 · ·
− − · · − − · · − − · · − − · ·
· · 1 · · · 1 · · · 1 · · · 1 ·
· · · 1 · · · 1 · · · 1 · · · 1
· · − − · · − − · · − − · · − −



Figure 3.2.1: A staged tree T and its Horn matrix H in Proposition 3.2.4. A dot represents the
entry 0 and a minus sign represents the entry −1.

Next we show that staged tree models have rational MLE, so they satisfy part (1)
of Theorem 3.1.1. Our formula for Φ uses the notation for I, J and µij introduced in
Definition 3.2.2. This formula is known in the literature on chain event graphs (see
e.g. [78]).

Proposition 3.2.4. Let MT be a staged tree model, and let u = (uj)j∈J be a vector of
counts. For i ∈ I, let f be the floret containing the label si, and define the estimates

ŝi :=

∑
j µijuj∑

s`∈f
∑

j µ`juj
and p̂j :=

∏
i∈I

(ŝi)
µij .

The rational function Φ that sends (uj)j∈J to (p̂j)j∈J is the MLE of the model MT .
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Proof. We prove that the likelihood function L(p, u) has a unique maximum at p = (p̂j)j∈J .
For a floret f ∈ F , we fix the vector of parameters sf = (si)si∈f , and we define the local
likelihood function Lf (sf , u) =

∏
si∈f s

αi
i , where αi =

∑
j µijuj . We have

L(p, u) =
∏
j

p
uj
j =

∏
j

∏
i

s
ujµij
i =

∏
i

sαii =
∏
f∈F

Lf (sf , u).

Since the Lf depend on disjoint sets of unknowns, maximizing L is achieved by maximizing
the factors Lf separately. But Lf is the likelihood function of the full model ∆|f |−1, given
the data vector (αi)si∈f . The MLE of that model is ŝi = αi/

∑
s`∈f α`, where si ∈ f .

Hence, argmaxsf
(
Lf (sf , u)

)
= (ŝi)si∈f and argmaxp

(
L(p, u)

)
= (p̂j)j∈J .

Remark 3.2.5. Here is a method for evaluating the MLE in Proposition 3.2.4. Let [v] ⊂ J
be the set of root-to-leaf paths through a node v in the tree T and define u[v] =

∑
j∈[v] uj .

The ratio u[v′]/u[v] is the empirical transition probability from v to v′ given arrival at v.
To obtain ŝi we first compute the quotients u[v′]/u[v] for all edges vv′ with parameter label
si. We aggregate them by adding their numerators and denominators separately. This
gives si = (

∑
u[v′])/(

∑
u[v]), where both sums range over all edges vv′ with parameter

label si.

Proposition 3.2.4 yields an explicit description of the Horn pair (H,λ) associated to the
model MT .

Corollary 3.2.6. Fix a staged tree model MT as above. Let H be the (|I| + |F |) × |J |
matrix whose rows are indexed by the set I t F and entries are given by

hij = µij for i ∈ I, and

hfj = −
∑
s`∈f

µ`j for f ∈ F.

Define λ ∈ {−1,+1}|J | by λj = (−1)
∑
f hfj . Then (H,λ) is a Horn pair for MT .

Given a staged tree T , we call the matrix H in Corollary 3.2.6 the Horn matrix of T .

Remark 3.2.7. In Corollary 3.2.6, for a floret f , let Hf be the submatrix of H with
row indices {i : si ∈ f} ∪ {f}. Then H is the vertical concatenation of the matrices Hf

for f ∈ F .

Example 3.2.8. For the tree T in Example 3.2.3, the Horn matrix H of MT is given in
Figure 3.2.1. The vector λ of the Horn pair (H,λ) is the vector of ones (1, . . . , 1) ∈ R16.
The rows of H are indexed by the florets and labels

(s0, s1, f1, s2, s3, f2, s4, s5, f3, s6, s7, f4, s8, s9, f5, s10, s11, f6, s12, s13, f7).

Note that (H,λ) is not minimal. Following the recipe in Lemma 3.1.3, we can delete the
rows s0, s1, f2, f3 of the matrix H by summing the pairs (s0, f2) and (s1, f3) and deleting
zero rows. The result is the minimal Horn pair (H ′, λ′), where λ′ = (−1, . . . ,−1).
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Two staged trees T and T ′ are called statistically equivalent in [40] if there exists a
bijection between the sets of root-to-leaf paths of T and T ′ such that, after applying this
bijection, MT =MT ′ in the open simplex ∆n. A staged tree model may have different
but statistically equivalent tree representations. In [40, Theorem 1], it is shown that
statistical equivalence of staged trees can be determined by a sequence of operations
on the trees, named swap and resize. One of the advantages of describing a staged tree
model via its Horn pair is that it gives a new criterion to decide whether two staged
trees are statistically equivalent. This is simpler to implement than the criterion given
in [40].

Corollary 3.2.9. Two staged trees are statistically equivalent if and only if their associated
Horn pairs reduce to the same minimal Horn pair.

One natural operation on a staged tree T is identifying two florets of the same size. This
gives a new staged tree T ′ whose Horn matrix is easy to get from that of T .

Corollary 3.2.10. Let T ′ be a staged tree arising from T by identifying two florets f
and f ′, say by the bijection (−)′ : f → f ′. The Horn matrix H ′ of MT ′ arises from
the Horn matrix H of MT by replacing the blocks Hf and Hf ′ in H by the block H ′f
defined by

h′ij = hij + hi′j for si ∈ f,
h′fj = hfj + hf ′j .

Proof. This follows from the definition of the Horn matrices for MT and MT ′ .

Example 3.2.11. Let T ′ be the tree obtained from Example 3.2.3 by identifying florets
f4 and f5 in T . Then MT ′ is the independence model of two random variables with four
states.

Now we turn to part (3) of Theorem 3.1.1. We describe the triple (A,∆,m) for a staged
tree model MT . The pair (H,λ) was given in Corollary 3.2.6. Let A be any matrix
whose rows span the left kernel of H, set m = |I|+ |F |, and write s for the m-tuple of
parameters (si, sf )i∈I,f∈F . From the Horn matrix in Corollary 3.2.6 we see that

∆ = m ·

1−
∑
j

(−1)εj
∏
i

(
si
sf

)µij ,

where f depends on i, m = lcm(
∏
i s
µij
f : f ∈ F ) and εj =

∑
i µij . The sign vector σ

for the triple (A,∆,m) is given by σi = +1 for i ∈ I and σf = −1 for f ∈ F . Then Y ∗A,σ
gets mapped to MT via φ(∆,m). Moreover, the map φT from Definition 3.2.2 factors
through φ(∆,m). Indeed, if we define ι : Θ → Y ∗A,σ by (si)i∈I 7→ (si,−1)i∈I,f∈F , then
φT = φ(∆,m) ◦ ι. The following derivation is an extension of that in [47, Expl. 3.13].
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Example 3.2.12. Let MT be the 4-chain model in Example 3.2.3. Its discriminant is

∆ = f1f2f3f4f5f6f7 − s0s2s6s10f3f5f7 − s0s2s6s11f3f5f7 − s0s2s7s12f3f5f6 − s0s2s7s13f3f5f6

− s0s3s8s10f3f4f7 − s0s3s8s11f3f4f7 − s0s3s9s12f3f4f6 − s0s3s9s13f3f4f6

− s1s4s6s10f2f5f7 − s1s4s6s11f2f5f7 − s1s4s7s12f2f5f6 − s1s4s7s13f2f5f6

− s1s5s8s10f2f4f7 − s1s5s8s11f2f4f7 − s1s5s9s12f2f4f6 − s1s5s9s13f2f4f6.

Our notation for the parameters matches the row labels of the Horn matrix H in
Figure 3.2.1. This polynomial of degree 7 is irreducible, so it equals the A-discriminant:
∆ = ∆A. The underlying matrix A has format 13 × 21, and we represent it by its
associated toric ideal

IA = 〈s10 − s11, s1s5f2 − s0s3f3, s1s4f2 − s0s2f3, s5s9f4 − s4s7f5, s3s9f4 − s2s7f5,

s12 − s13, s5s8f4 − s4s6f5, s3s8f4 − s2s6f5, s9s13f6 − s8s11f7, s7s13f6 − s6s11f7,

s0s2s6s11 − f1f2f4f6, s0s2s7s13 − f1f2f4f7, s0s3s8s11 − f1f2f5f6, s0s3s9s13 − f1f2f5f7,

s1s4s6s11 − f1f3f4f6, s1s4s7s13 − f1f3f4f7, s1s5s9s13 − f1f3f5f7, s1s5s8s11 − f1f3f5f6〉.

The toric variety YA = V (IA) has dimension 12 and degree 141. It lives in a linear
space of codimension 2 in P20, where it is defined by eight cubics and eight quartics.
The dual variety Y ∗A = V (∆A) is the above hypersurface of degree seven. We have
m = f1f2f3f4f5f6f7, and σ is the vector in {−1,+1}21 that has entry +1 at the indices
corresponding to the si and entry −1 at the indices corresponding to the fi.

It would be interesting to study the combinatorics of discriminantal triples for staged
tree models. Our computations suggest that, for many such models, the polynomial ∆ is
irreducible and equals the A-discriminant ∆A of the underlying configuration A. However,
this is not true for all staged trees, as seen in Equation (3.1.2) of Example 3.1.2. We
close this section with a familiar class of models with rational MLE whose associated
polynomials ∆ factor.

Example 3.2.13. The multinomial distribution encodes the experiment of rolling a k-
sided die m times and recording the number of times we observed the j-th side, for
j = 1, . . . , k. The associated model M is the independence model for m identically
distributed random variables on k states. We have n+ 1 =

(
k+m−1
m

)
. The Horn matrix H

is the (k + 1)× (n+ 1) matrix whose columns are the vectors (−m, i1, i2, . . . , ik)T where
i1, i2, . . . , ik are nonnegative integers whose sum equals m. Here, A = (1 1 · · · 1), so the
A-discriminant equals ∆A = x0 + x1 + · · ·+ xk. The following polynomial is a multiple
of ∆A:

∆ = (−x0)m − (x1 + x2 + · · ·+ xk)
m.

This ∆, with its marked term m = (−x0)m, encodes the MLE for the model M:

p̂(i1,...,ik) =

k∏
j=1

(∑
|I|=m uI · Ij

m
∑
|I|=m uI

)ij

Here, I ranges over all vectors in Nk that sum to m, and Ij denotes the j-th entry of I.
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3.3. Proof of Theorem 3.1.1

In this section we prove Theorem 3.1.1. For a pair (H,λ) consisting of a Horn matrix
H and a coefficient vector λ, let ϕ be the rational map defined in (3.1.4). We use ϕ
and ϕ(H,λ) interchangeably in this section, as well as φ and φ(∆,m). Recall that its j-th
coordinate is

ϕj(v) = λj

m∏
i=1

( n∑
k=0

hikvk

)hij
. (3.3.1)

For a fixed data vector u ∈ Nn+1, we define the likelihood function for the image of ϕ:

Lu : Rn+1 → R , v 7→
n∏
j=0

ϕj(v)uj . (3.3.2)

Lemma 3.3.1. Let H = (hij) be a Horn matrix, λ a vector satisfying (3.1.3) and u ∈ Nn+1.
Then u is a critical point of its own likelihood function Lu. Furthermore, if u′ is another
critical point of Lu, then ϕ(u) = ϕ(u′).

Proof. We compute the partial derivatives of Lu. For ` = 0, . . . , n we find

∂

∂v`
Lu(v) =

n∑
j=0

uj
Lu(v)

ϕj(v)

∂

∂v`
ϕj(v)

=
n∑
j=0

uj
Lu(v)

ϕj(v)

m∑
i=1

hij
ϕj(v)∑n
k=0 hikvk

hi`

= Lu(v)

m∑
i=1

n∑
j=0

uj hij hi`∑n
k=0 hikvk

= Lu(v)

m∑
i=1

hi`
∑n

j=0 hijuj∑n
k=0 hikvk

.

For v = u, this evaluates to zero, since the sums in the fraction cancel and the `-th
column of H sums to zero. This shows that u is a critical point.

Next, let u′ be another critical point of Lu. Using terminology from [46, Theorem 1],
this means that ϕ(u′) is a critical point of the likelihood function L(p, u) of the model
M defined as the image of ϕ. The same holds for ϕ(u). By the implication (ii) to (i)
in [46, Thm. 1], the model M has ML degree one. This implies ϕ(u) = ϕ(u′).

We use [46] to explain the relation between models with rational MLE and Horn pairs.

Proof of Theorem 3.1.1, Equivalence of (1) and (2). Let M be a model with rational
MLE Φ. The Zariski closure of M is a variety whose likelihood function has a unique
critical point. By [46, Thm. 1], there is a Horn matrix H and a coefficient vector λ such
that ϕ(H,λ) = Φ. Now, the required sum-to-one and positivity conditions for ϕ(H,λ) are
satisfied because they are satisfied by the MLE Φ. Indeed, the MLE of any discrete
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statistical model maps positive vectors u in Rn+1
>0 into the simplex ∆n. Conversely, we

claim that every Horn pair (H,λ) specifies a nonempty model M with rational MLE.
Indeed, define M to be the image of ϕ(H,λ). By the defining properties of the Horn pair,
we have M⊂ ∆n. Lemma 3.3.1 shows that ϕ(H,λ) is the MLE of M.

Next, we relate Horn pairs to discriminantal triples.

Proof of Theorem 3.1.1, Equivalence of (2) and (3). We already exhibited a bijection
between pairs (H,λ) and pairs (∆,m) given by Equation 3.1.12. The matrix A is the left
kernel of H and forms the triple (A,∆,m). It is a matrix of size r×m of rank r. When H
is a Horn matrix, A contains (1, . . . , 1) in its row span. This implies that the polynomial
∆ is homogeneous, which in turn implies that it is A-homogeneous by AH = 0.

Next, we show that the pair (H,λ) being friendly corresponds to the polynomial ∆
vanishing on Y ∗A. This is part of the desired equivalence.

Claim. The pair (H,λ) is friendly if and only if the A-homogeneous polynomial ∆ vanishes
on the dual toric variety Y ∗A.

Proof of Claim. Let (H,λ) be friendly and A be a matrix as above. The Laurent polyno-
mial q := ∆/m is a rational function on Pm−1 that vanishes on the dual toric variety
Y ∗A. To see this, consider the exponentiation map ϕ2 : Pm−1 → Rn+1, x 7→ λ ∗xH , where
∗ is the entrywise product and xH := (xh0 , . . . , xhn). Let f = 1 − (p0 + · · · + pn). We
have q = f ◦ ϕ2. By [46, Thms. 1 and 2], the function ϕ2 maps an open dense subset
of Y ∗A dominantly to the closure M of the image of ϕ(H,λ). Since f = 0 on M, we have
f ◦ ϕ2 = 0 on an open dense subset of Y ∗A, hence q = 0 on Y ∗A, so ∆ = 0 there as well.

Conversely, let ∆ vanish on Y ∗A. We claim that q(x) is zero for all x = Hu in the image
of the linear map H. We may assume m(x) 6= 0. We only need to show that x is in the
dual toric variety Y ∗A, since ∆ vanishes on it. So, let xi =

∑n
j=0 hijuj for i = 1, . . .m. We

claim that t = (1, . . . , 1) is a singular point of the hypersurface

γ−1
A (Hx ∩ YA) =

{
t ∈ Cr |

m∑
i=1

xit
ai = 0

}
.

First, the point t lies on that hypersurface since the columns of H sum to zero:

m∑
i=1

xi =
m∑
i=1

n∑
j=0

hijuj =
n∑
j=0

uj

m∑
i=1

hij = 0.

For s = 1, . . . , r we have ∂
∂ts
tai = asit

ai−es , with es the standard basis vector of Zr, and

∂

∂ts

m∑
i=1

xit
ai =

m∑
i=1

n∑
j=0

hijujasit
ai−es =

n∑
j=0

uj

m∑
i=1

asihijt
ai−es .

This is zero at t = (1, . . . , 1) because AH = 0. �
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We now prove the rest of the equivalence. Let (H,λ) be a Horn pair, let ϕ be its Horn
map and let φ be the associated monomial map. Let M be the statistical model with
MLE ϕ, so M = ϕ(Rn+1

>0 ). We have ϕ = φ ◦ H. By Proposition 3.3.3, there exists a
unique sign vector σ such that imH|Rn+1

>0
⊆ Rmσ . From the proof of the above claim we

know that imH ⊆ Y ∗A. Together, we have

M = ϕ(Rn+1
>0 ) = φ(imH|Rn+1

>0
) ⊆ φ(Y ∗A,σ).

By [46, Theorems 1 and 2] we have φ(Y ∗A) ⊆M′, where M′ is the real part of ϕ(Cn+1).
We also have φ(Y ∗A,σ) ⊆ Rn+1

>0 by definition of the orthant. Thus φ(Y ∗A,σ) ⊆M′ ∩ Rn+1
>0 .

Every element in the latter set is a fixed point of the rational function ϕ, by a similar
argument as in Lemma 3.3.1 for complex space. HenceM′∩Rn+1

>0 =M, so φ(Y ∗A,σ) ⊆M.

Finally, if (A,∆,m) is a discriminantal triple then (H,λ) is a Horn pair by definition.
This completes the proof of Theorem 3.1.1.

In the next two propositions, we formulate simple criteria to decide whether the image of
the map ϕ(H,λ) associated to a Horn matrix H and a coefficient vector λ is a statistical
model. These are essential for constructing models with rational MLE in Algorithm 1.

Proposition 3.3.2. Let (H,λ) be a friendly pair. If there exists a vector u0 ∈ Rn+1 such
that ϕ(u0) > 0, then we have ϕ(u) > 0 for all u in Rn+1

>0 where it is defined.

Proof. The function ϕ is homogeneous of degree zero. It suffices to prove that each
coordinate of ϕ(u) is a positive real number, for all vectors u with positive integer entries.
Indeed, every positive u in Rn+1 can be approximated by rational vectors, which can
be scaled to be integral. The open subset U = ϕ−1(∆n) of Rn+1 contains u0 by our
assumptions. If U = Rn+1, then we are done. Else, U has a nonempty boundary ∂U . By
continuity, ∂U ⊆ ϕ−1(∂∆n). The likelihood function Lu for the data vector u vanishes
on ∂U .

We claim that Lu has a critical point in U . The closed subset U is homogeneous. Seen in
projective space Pn, it becomes compact. The likelihood function Lu is well defined on
this compact set in Pn, since it is homogeneous of degree zero, and Lu vanishes on the
boundary. Hence the restriction Lu|U is either identically zero or it has a critical point in
U . But, since u0 ∈ U is a point with Lu(u0) 6= 0, the second statement must be true.

Pick such a critical point u′. Since U is open in Rn+1, the point u′ is also critical point
of Lu. By Lemma 3.3.1 and since u′ ∈ U , we have ϕ(u) = ϕ(u′) > 0.

Proposition 3.3.3. Let (H,λ) be a friendly pair, with no zero or collinear rows in H.
Then (H,λ) is a Horn pair if and only if for every row ri of H all nonzero entries of ri
have the same sign σi, and the sign vector σ = (σi) satisfies λjσ

hj > 0 for all columns j.
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Proof. Let (H,λ) be a Horn pair. Let `1, . . . , `k be the linear forms corresponding to
the rows in H that have both positive and negative entries. Since `1 has positive and
negative coefficients, there exists a positive vector u such that `1(u) = 0. Since (H,λ)
is minimal, we may choose u > 0 such that `1(u) = 0 but `k′(u) 6= 0 for all k′ 6= 1. The
form `1 appears in the numerator of some coordinate of ϕ, making this coordinate zero
at u. But this contradicts the fact that (H,λ) is a Horn pair. Therefore we cannot have
rows with both positive and negative entries. The inequalities λjσ

hj > 0 then follow from
the definition of a Horn pair by evaluating ϕ(u) for some positive vector u.

Conversely, if the sign vector σ is well-defined, the inequalities λjσ
hj > 0 imply ϕ(u) > 0

for all positive u. Hence (H,λ) is a Horn pair.

Every model with rational MLE arises from a toric variety YA. In some cases, the model
is itself a toric variety YC . It is crucial to distinguish the two matrices A and C. The
two toric structures are very different. For instance, every undirected graphical model is
toric [27, Prop. 3.3.3]. The toric varieties YC among staged tree modelsMT were classified
in [28]. The 4-chain model MT = YC is itself a toric variety of dimension 7 in P15. But
it arises from a toric variety YA of dimension 12 in P20, seen in Example 3.2.12.

3.4. Geometric modeling

Toric models with rational MLE play an important role in geometric modeling [19,38].
Given a matrix C ∈ Zr×(n+1) and a vector of weights w ∈ Rn+1

>0 , one considers the scaled
projective toric variety YC,w in RPn. This is defined as the closure of the image of

γC,w : (R∗)r → RPn , (t1, . . . , tr) 7→
(
w0

r∏
i=1

tci0i , w1

r∏
i=1

tci1ti , . . . , wn

r∏
i=1

tcini

)
.

The set MC,w of positive points in YC,w is a statistical model in ∆n. There is a natural
homeomorphism from the toric model MC,w onto the polytope of C. This is known in
geometry as the moment map. For a reference from algebraic statistics, see [27, Proposi-
tion 2.1.5]. In geometric modeling the pair (C,w) defines toric blending functions [53].

It is desirable for the toric blending functions to have rational linear precision [19,53].
The property is rare and it depends in a subtle way on (C,w). Garcia-Puente and
Sottile [38] established the connection to algebraic statistics. They showed that rational
linear precision holds for (C,w) if and only if the statistical model MC,w has rational
MLE.

Example 3.4.1. The most classical blending functions with rational linear precision live
on the triangle {x ∈ R3

>0 : x1+x2+x3 = 1}. They are the Bernstein basis polynomials

m!

i!j!(m− i− j)!
xi1x

j
2x
m−i−j
3 for i, j ≥ 0, i+ j ≤ m. (3.4.1)
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Here C is the 3 ×
(
m+1

2

)
matrix whose columns are the vectors (i, j,m − i − j). The

weights are w(i,j) = m!
i!j!(m−i−j)! . The toric model MC,w is the multinomial family, where

(3.4.1) is the probability of observing i times 1, j times 2 and m − i − j times 3 in
m trials. This model has rational MLE, as seen in Example 3.2.13. Again, notice the
distinction between the two toric varieties. Here, YA is a point in Pm, whereas YC is a

surface in P(m2 )−1.

Clarke and Cox [19] raise the problem of characterizing all pairs (C,w) with rational
linear precision. This was solved by Duarte and Görgen [28] for pairs arising from staged
trees. While the problem remains open in general, the theory in this chapter offers new
tools. We may ask for a characterization of discriminantal triples whose models are
toric.

3.5. Constructing models with rational MLE

Part (3) in Theorem 3.1.1 allows us to construct models with rational MLE starting
from a matrix A that defines a projective toric variety YA. To carry out this construction
effectively we propose Algorithm 1. In most cases, the dual variety Y ∗A is a hypersurface,
and we can compute its defining polynomial ∆A, the discriminant [39]. The polynomial
∆ in a discriminantal triple can be any homogeneous multiple of ∆A, but we just take
∆ = ∆A. For all terms m in ∆A, we check whether (A,∆A,m) is a discriminantal triple.

Lines 1 and 15 of Algorithm 1 are computations with Gröbner bases. Executing Line 15
can be very slow. It may be omitted if we are satisfied with obtaining the parametric
description and MLE Φ(`) of the model M`. For the check in Line 14, we rely on
Proposition 3.3.2 for correctness. A check based on the criterion in Proposition 3.3.3 is
also possible.

Example 3.5.1 (r = 2,m = 4). For distinct integers α, β, γ > 0 with gcd(α, β, γ) = 1 let

Aα,β,γ =

(
1 1 1 1
0 α β γ

)
.

We ran Algorithm 1 for all 613 such matrices with 0 < α < β < γ ≤ 17. Line 1 computes
the discriminant ∆A of the univariate polynomial f(t) = x1 + x2t

α + x3t
β + x4t

γ . The
number n+ 2 of terms of these discriminants equals 7927 in total, for an average of 12.93
terms per discriminant. Thus a total of 7927 candidate triples (A,∆A,m) were tested
in Lines 12 to 21. Precisely 123 of these were found to be discriminantal triples. This
is a fraction of 1.55 %. Hence, only 1.55 % of the resulting complex varieties permitted
by [46] are actually statistical models.

Here is a typical model that was discovered. Take α = 1, β = 4, γ = 7. The discriminant

∆A = 729x4
2x

6
3 − 6912x3

1x
7
3 − 8748x5

2x
4
3x4 + 84672x3

1x2x
5
3x4 + 34992x6

2x
2
3x

2
4

−351918x3
1x

2
2x

3
3x

2
4 − 46656x7

2x
3
4 + 518616x3

1x
3
2x3x

3
4 − 823543x6

1x
4
4
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Algorithm 1: From toric varieties to statistical models

Input :An integer matrix A of size r ×m with (1, . . . , 1) in its row span
Output :An integer n and a collection of statistical models M(`) = (Φ(`), I(`)),

where Φ(`) : Rn+1 → Rn+1 is a rational MLE for M(`), and
I(`) ⊆ R[p0, . . . , pn] is the defining prime ideal of M(`).

1 Compute the A-discriminant ∆A ∈ Z[x1, . . . , xm];
2 n← #terms(∆A)− 2;
3 models← {};
4 for 0 ≤ ` ≤ n+ 1 do
5 m← terms(∆A)`;
6 q ← 1−∆A/m;
7 for 0 ≤ i ≤ n do
8 λi ← coefficients(q)i;
9 hi ← exponent vectors(q)i;

10 Φ
(`)
i ← (u 7→ λi

∏m
j=1(

∑n
k=0 hjkuk)

hji);

11 end
12 H ← (hi)i;

13 Choose any positive vector v in Rn+1
>0 ;

14 if Φ
(`)
i (v) > 0 for i = 0, 1, . . . , n then

15 Compute the ideal I(`) of the image of Φ(`);

16 models← models ∪ {(Φ(`), I(`))};
17 end

18 end
19 return models;

has 9 terms, so n = 7. The term m is underlined. The associated model is a curve of degree
ten in ∆7. Its prime ideal I(`) is generated by 18 quadrics. Among them are 15 binomials
that define a toric surface of degree six: 49p1p2 − 48p0p3, 3p0p4 − p2

2, . . . , 361p3p7 − 128p2
5.

Inside that surface, our curve is cut out by three quadrics, here is one of them:

26068p2
2 + 73728p0p5 + 703836p0p6 + 234612p2p6 + 78204p4p6 + 612864p0p7

+ 212268p2p7 + 78204p4p7 − 8379p2
7.

Example 3.5.2 (r = 3,m = 6). For any positive integers α, β, γ, ε, we consider the matrix

A =

0 α β 0 γ ε
0 0 0 1 1 1
1 1 1 1 1 1

 .

The discriminant ∆A is the resultant of two trinomials x1+x2t
α+x3t

β and x4+x5t
γ+x6t

ε.
We ran Algorithm 1 for all 138 such matrices with

0 < α < β ≤ 17, 0 < γ < ε ≤ 17, gcd(α, β) = gcd(γ, ε) = 1.
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The number n+ 2 of terms of these discriminants equals 2665 in total, for an average
of 19.31 terms per discriminant. Thus a total of 2665 candidate triples (A,∆A,m) were
tested in Line 13. Precisely 93 of these are discriminantal triples. This is only 3.49 %.

We now shift gears by looking at polynomials ∆ that are multiples of the A-discriminant.

Example 3.5.3 (r = 1,m = 4). We saw in Examples 3.1.2 and 3.2.13 that interesting
models arise from the matrix A = (1 1 · · · 1) whose toric variety is just a point. Any
homogeneous multiple ∆ of the linear form ∆A = x1 + x2 + · · ·+ xm can be the input
in Line 1 of Algorithm 1. Here, taking ∆ = ∆A results in the model given by the full
simplex ∆m−2.

Let m = 4 and abbreviate xa = xa11 x
a2
2 x

a3
3 x

a4
4 and |a| = a1+a2+a3+a4 for a ∈ N4. We

conducted experiments with two families of multiples. The first uses binomial multipliers:

∆ = (xa + xb)∆A or ∆ = (xa − xb)∆A,

where |a| = |b| ∈ {1, 2, . . . , 8} and gcd(xa, xb) = 1. This gives 1028 polynomials ∆. The
numbers of polynomials of degree 2, 3, 4, 5, 6, 7, 8, 9 is 6, 21, 46, 81, 126, 181, 246, 321.
For the second family we use the trinomial multiples

∆ = (xa + xb + xc)∆A or ∆ = (xa + xb − xc)∆A,

where |a|=|b|=|c| ∈ {1, 2, 3} and gcd(xa, xb, xc) = 1. Each list contains 4 quadrics, 104
cubics and 684 quartics. We report our findings in a table:

Family Pairs (∆,m) Horn pairs Percentage

(xa − xb)∆A 8212 12 0.15%
(xa + xb)∆A 8218 0 0%

(xa + xb − xc)∆A 8678 8 0.01%
(xa + xb + xc)∆A 8968 0 0%

All 12 Horn pairs in the first family represent the same model, up to permuting coordinates.
All are coming from the six quadrics of the family. The model is the surface in ∆4 defined
by the 2× 2 minors of the matrix(

p0 p1 p2

p0+p1+p2 p3 p4

)
.

This is a staged tree model similar to Example 2, but now with three choices at each
blue node instead of two. The eight Horn pairs in the third family represent two distinct
models. Four of the eight Horn pairs represent a surface in ∆5 and the rest represent a
surface in ∆6.
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Our construction of models with rational MLE starts with families where r and m are
fixed. However, as the entries of the matrix A go up, the number n+ 1 of states increases.
This suggests the possibility of listing all models for fixed values of n. Is this list finite?

Problem. Suppose that n is fixed. Are there only finitely many models with rational
MLE in the simplex ∆n? Can we find absolute bounds, depending only on n, for the
dimension, degree and number of ideal generators of the associated varieties in Pn?

Algorithm 1 is a tool for studying these questions experimentally. At present, we do not
have any clear answers, even for n = 3, where the models are curves in a triangle.
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4. Algebraic manifolds

Let M be an algebraic manifold given as the solution set of a system of polynomial
equations and inequalities. In this chapter we develop a numerical method to:

(1) approximate the Lebesgue integral
∫
M f(x) dx of a given function f on M, and

(2) sample from a probability distribution with a given density on M.

These problems are closely related in theory. In applications however, they may occur
separately. For instance, in Section 4.2 we encounter an example from computational
physics that involves only (1). On the other hand, the subsequent example from topological
data analysis concerns (2).

When M is given as a set of solutions to implicit equations, the standard techniques to
solve (2) involve moving randomly from one sample point on M to the next nearby, and
fall under the umbrella term of Markov Chain Monte Carlo (MCMC). The literature on
MCMC methods is vast. The interested reader is referred to the recent articles [60, 88].

This chapter presents a new method that solves (1) and (2) when the functions Fi are
polynomial. In simple terms, the method can be described as follows. First, we choose
a random linear subspace of complementary dimension and calculate its intersection
with M. Since the implicit equations are polynomial, the intersection can be efficiently
determined using numerical polynomial equation solvers. For example, we could pick the
package HomotopyContinuation.jl [12] from Example 2.1.6 as our solver. The number
of intersection points is finite and bounded by the degree of the algebraic manifold. Next,
if we want to solve (1) we evaluate a modified function f at each intersection point, sum
its values, and repeat the process to approximate the desired integral. Else if we want
to solve (2), after a rejection step we pick one of the intersection points at random to
be our sample point. We then repeat the process to obtain more samples of the desired
density.

Compared to MCMC sampling, our method has two main advantages. First, we have
the option to generate points that are independent of each other. Second, the method is
global in the sense that it also works when the manifold has multiple distinct connected
components, and does not require picking a starting point x0 ∈M.

The main theoretical result supporting the method is Theorem 4.1.1, which we state in
Section 4.1. It is in line with a series of classical results commonly known as Crofton’s
formulae or kinematic formulae [75] that relate the volume of a manifold to the expected
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number of its intersection points with random linear spaces. Section 4.2 presents appli-
cations of the method to examples in topological data analysis and statistical physics.
Section 4.3 introduces the tools that are needed for the proof of the main theorem. The
proof is carried out in Section 4.4 where we also prove a rate of convergence bound for
our method. We prove a variant of Theorem 4.1.1 for projective algebraic manifolds in
Section 4.5. In Section 4.6 we review other methods that make use of a kinematic formula
for sampling. We also discuss the advantages and limitations of our method and possible
future work.

Before we continue, let us fix some notation. Throughout this chapter we fix an n-
dimensional algebraic manifold M⊆ RN . The Euclidean inner product on RN is defined
by 〈x, y〉 := xT y and the associated norm is ‖x‖ :=

√
〈x, x〉. The unit sphere in RN is

SN−1 := {x ∈ RN : ‖x‖ = 1}. For a function f :M→N between manifolds we denote
by Dxf the derivative of f at x ∈ M. The tangent space of M at x is denoted TxM
and the normal space is NxM.

4.1. A method for sampling

To state our result, we fix a measurable function f : M→ R≥0 with finite integral over
M. We define the auxiliary function f : Rn×N × Rn → R as follows:

f(A, b) :=
∑

x∈M:Ax=b

f(x)

α(x)
where α(x) :=

√
1 + 〈x,ΠNxM x〉

1 + ‖x‖2
Γ
(
n+1

2

)
√
π
n+1

and where ΠNxM : RN → NxM denotes the orthogonal projection onto the normal space
of M at x ∈M. Note that this projection can be computed from the implicit equations
forM, because NxM is the row-span of the Jacobian matrix J(x) = [∂Fi∂xj

(x)]1≤i≤r,1≤j≤N .

Therefore, if Q ∈ RN×r is the Q-factor from the QR-decomposition of J(x)T , then we
have NxM = QQT . This means that we can easily compute f(A, b) from M∩LA,b.

The operator f 7→ f allow us to state the following main result, making precise the
method described at the beginning of the chapter.

Theorem 4.1.1. Let ϕ(A, b) be the probability density for which the entries of A ∈ Rn×N
and b ∈ Rn are i.i.d. standard normal. In the notation introduced above:

(1) The integral of f over M is the expected value of f :∫
M
f(x) dx = E(A,b)∼ϕf(A, b).

(2) Assume that f :M→ R is nonnegative and that
∫
M f(x) dx is positive and finite.

Let X ∈M be the random variable obtained by choosing a pair (A, b) ∈ Rn×N × Rn with
probability

ψ(A, b) :=
ϕ(A, b) f(A, b)

Eϕ(f)
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and choosing one of the finitely many points X of the intersection M ∩ LA,b with
probability f(x)α(x)−1f(A, b)−1. Then X is distributed according to the scaled density
f(x)/(

∫
M f(x) dx) associated to f(x).

Using the formula for α(x) we can already evaluate f(A, b) for an integrable function f .
Thus we can approximate the integral of f by computing the empirical mean

E(f, k) = 1
k (f1(A, b) + · · ·+ fk(A, b))

of a sample drawn from (A, b) ∼ ϕ. The next lemma yields a bound for the rate of
convergence of this approach. It is an application of Chebyshev’s inequality and proved
in Section 4.4.

Lemma 4.1.2. Assume that |f(x)| and ‖x‖ are bounded on M. The variance σ2(f) of

f(A, b) is finite and for ε > 0 we have Prob{|E(f, k)−
∫
M f(x) dx| ≥ ε} ≤ σ2(f)

ε2k
.

In (4.4.1) we will see a deterministic bound for σ2(f), which involves the degree of the
ambient variety of M and upper bounds for ‖x‖ and |f(x)| on M. In our experiments
we also use the empirical variance s2(f) of a sample for estimating σ2(f).

For sampling (A, b) ∼ ψ in the second part of Theorem 4.1.1 we could use MCMC
sampling. Note that this would employ MCMC sampling for the flat space Rn×N × Rn,
which is easier than MCMC for nonlinear spaces like M. Nevertheless, in this chapter we
use the simplest method for sampling ψ, namely rejection sampling. This is used in the
experiment section and explained in Section 4.3.

4.2. Experiments

In this section we apply our main result to examples. All experiments have been per-
formed on macOS 10.14.2 on a computer with Intel Core i5 2,3GHz (two cores) and
8 GB RAM memory. For computing the intersections with linear spaces, we use the
numerical polynomial equation solver HomotopyContinuation.jl [12]. For plotting we
use Matplotlib [48]. For sampling from the distribution ψ(A, b) we use rejection sampling
as described in Section 4.3.

As a first simple example, consider the plane curve M given by the equation

x4 + y4 − 3x2 − xy2 − y + 1 = 0. (4.2.1)

We have vol(M) = Eϕ(1). We can therefore estimate the length of the curveM by taking
a sample of i.i.d. pairs (A, b) and computing the empirical mean E(1, k) of 1 of the sample.
A sample of k = 105 yields E(1, k) = 11.2. In Lemma 4.1.2 we take ε = 0.1 and the

variance of the sample s2, and get an upper bound of s2

ε2k
= 0.008. Therefore, we expect

that 11.2 is a good approximation of the true length. We can also take the deterministic
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upper bound from (4.4.1) for the variance σ2 of 1. Here, we take supx∈M ‖x| =
√

8. To
get an estimate with accuracy at least ε = 0.1 with probability at least 0.9 we need a
sample of size k ≥ σ2

ε2·0.9 ≥ 1421300. Taking such a sample size we get an estimated length
of ≈ 11.217.

Next, we use the second part of Theorem 4.1.1 to generate random samples on M. The
left picture of Figure 4.2.1 shows a sample of 200 points drawn uniformly from the
curve. The right picture shows 200 points drawn from the scaled density associated
to f(x, y) = e2y. As can be seen from the pictures the points drawn from the second
distribution concentrate in the upper half ofM, whereas points from the first distribution
spread equally around the curve. This experiment also shows how our method generates
global samples. The curve has more than one connected component, which is not an
obstacle for our method.

Figure 4.2.1: Left picture: a sample of 200 points from the uniform distribution on the curve
(4.2.1). Right picture: a sample of 200 points from the same distribution scaled by e2y.

Our method is particularly appealing for hypersurfaces like (4.2.1) because intersecting a
hypersurface with a linear space of dimension one reduces to solving a single univariate
polynomial equation. This can be done very efficiently, for instance using the algorithm
from [79], and so for hypersurfaces we can easily generate large sample sets.

The pictures suggest to use sampling for visualization. For instance, we can visualize a
semialgebraic piece of the complex and real part of the Trott curve T , defined by the
equation

144(x4
1 + x4

2)− 225(x2
1 + x2

2) + 350x2
1x

2
2 + 81 = 0. (4.2.2)

The associated complex variety in C2 can be seen as a real variety TC in R4. We sample
from the real Trott curve T and the complex Trott curve TC intersected with the box
−1.5 < Real(x1), Imag(x1),Real(x2), Imag(x2) < 1.5. Then, we take a random projection
R4 → R3 to obtain a sample in R3 (the projected sample is not uniform on the projected
semialgebraic variety). The outcome of this experiment is shown in Figure 4.2.2.
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Figure 4.2.2: The blue points are a sample of 1569 points from the complex Trott curve (4.2.2)
seen as a variety in R4 projected to R3. The orange points are a sample of 1259 points from the
real part of the Trott curve. The two pictures show two different projections to R3.

Application to statistical physics

Next, we apply Theorem 4.1.1 to study a physical system of N particles q = (q1, . . . , qN )
interpreted as elements of a manifold M⊆ (R3)N that models the spatial constraints of
the qi. In our example we have N = 6 and the qi are the spatial positions of carbon atoms
in a cyclohexane molecule. The constraints of this molecule are algebraic and define the
manifold

M = {q = (q1, . . . , q6) ∈ (R3)6 | ‖q1−q2‖2 = · · · = ‖q5−q6‖2 = ‖q6−q1‖2 = c2}, (4.2.3)

where c is the bond length between two neighboring atoms (the vectors qi− qi+1 are called
bonds). In our example we take c2 = 5 (unitless). Due to rotational and translational
invariance of the equations we define q1 to be the origin, q6 = (c, 0, 0) and q5 to be rotated
in such a way that its last entry is equal to zero. We thus have 11 variables.

Lelievre et. al. [59] write “In the framework of statistical physics, macroscopic quantities
of interest are written as averages over [...] probability measures on all the admissible
microscopic configurations.” As the probability measure we take the canonical ensemble
[59]. If E(q) denotes the total energy of a configuation q, the density in the canonical
ensemble is proportional to f(q) = e−E(q). That is, a configuration is most likely to appear
when its energy is minimal. We model the energy of a molecule using an interaction
potential, namely the Lennard Jones potential V (r) = 1

4 ( cr )12 − 1
2 ( cr )6 see e.g. [59,

Eq. (1.5)]. Then, the energy function of a system is

E(q) =
∑

1≤i<j≤N
V (‖qi − qj‖).
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In this example we consider the average angle between neighboring bonds qi−1 − qi and
qi+1 − qi given by the formula

θ(q) =
∠(q6 − q1, q2 − q1) + · · ·+ ∠(q5 − q6, q1 − q6)

6
,

where ∠(b1, b2) := arccos 〈b1,b2〉‖b1‖‖b2‖ . We compute the macroscopic state of θ(q) by deter-

mining its distribution Prob{θ(q) = θ0} = 1
H

∫
θ(q)=θ0

f(q)dq, where H =
∫
V f(q)dq is the

normalizing constant. For comparing the probabilities of different values for θ it suffices
to compute

ρ(θ0) =

∫
θ(q)=θ0

f(q)dq.

We approximate this integral as ρ(θ0) ≈ µ1(θ0)
µ2(θ0) , where

µ1(θ0) =

∫
θ(q)>θ0−∆θ
θ(q)<θ0+∆θ

f(q) dq and µ2(θ0) =

∫
θ(q)>θ0−∆θ
θ(q)<θ0+∆θ

1 dq

for some ∆θ > 0 (in our experiment we take ∆θ = 3◦), and we approximate both µ1(θ0)
and µ2(θ0) for several values of θ by their empirical means E(f, k) and E(1, k), using
Theorem 4.1.1. We take k = 104 samples in both cases.

Figure 4.2.3 shows both the values of the empirical means in the logarithmic scale, and
the ratio of µ1(θ0) and µ2(θ0).

Figure 4.2.3: The left picture shows the approximations of µ1(θ0) and µ2(θ0) by the empirical
means E(f, k) and E(1, k). Both integrals were approximated independently, each by an empirical
mean obtained from 104 intersections with linear spaces. The right picture shows the ratio of the
empirical means, which approximate ρ(θ0).

How good is our estimate? From the plot above we can deduce that ε = 2 is a good
accuracy for both µ1(θ0) and µ2(θ0). Using the variances s2

1 and s2
2 of the samples,

respectively, we get
s21
ε2k

= 0.02 and
s22
ε2k

= 0.04. Hence, by Lemma 4.1.2 we expect that
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the probability that the empirical mean E(f, k) deviates from µ1(θ0) by more than ε is
at most 2%. And the probability that E(1, k) deviates from µ2(θ0) by more than ε is at
most 4%. We conclude that our approximation of ρ(θ) = H Prob{θ(q) = θ0} is a good
approximation.

In fact, Figure (4.2.3) shows a peak at around θ = 110◦. It is known that the total
energy of the cyclohexane system is minimized when all angles between consecutive bonds
achieve 110.9◦; see [13, Ch. 2]. Therefore, our experiment gives a good approximation
of the molecular geometry of cyclohexane. An example where all the angles between
consecutive bonds are 110.9◦ is shown in Figure 4.2.4.

Figure 4.2.4: The picture shows a point from the variety (4.2.3), for which the angles between
two consecutive bonds are all equal to 110.9◦ degrees. This configuration is also known as the
“chair” [67].

Application to topological data analysis

Theorem 4.1.1 can be of interest for researchers working in topological data analysis
using persistent homology (PH). Persistent homology is a tool to estimate the homology
groups of a topological space from a finite point sample. The underlying idea is as follows:
for varying t, put a ball of radius t around each point and compute the homology of the
union of those balls. One then looks at topological features that persists for large intervals
in t. It is intuitively clear that the point sample should be large enough to capture all of
the topological information of its underlying space, and, on the other hand, the sample
should be small enough to remain feasible for computations. Dufresne et al. [30] comment
“Both the theoretical framework for the PH pipeline and its computational costs drive the
requirements of a suitable sampling algorithm.” (For an explanation of the PH pipeline
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see [30, Sec. 2] and the references therein). They develop an algorithm that takes as input
a denseness parameter ε and outputs a sample where each point has at most distance ε
to its nearest neighbor. At the same time, their algorithm tries to keep the sample size as
small as possible. In the context of topological data analysis our algorithm can be used
as an alternative to [30].

In the following we use Theorem 4.1.1 for generating samples as input for the PH pipeline
from [30]. The output of this pipeline is a persistence diagram. It shows the appearance
and the vanishing of topological features in a 2-dimensional plot. Each point in the plot
corresponds to an i-dimensional “hole”, where the x-coordinate represents the time t
when the hole appears, and the y-coordinate is the time when it vanishes. Points that
are far from the line x = y should be interpreted as signals coming from the underlying
space. The number of those points is used as an estimator for the Betti number βi. For
computing persistence diagrams we use Ripser [4].

First, we consider two toy examples from [30, Sec. 5]: the surface S1 is given by

4x4
1+7x4

2+3x4
3−3−8x3

1+2x2
1x2−4x2

1−8x1x
2
2−5x1x2+8x1−6x3

2+8x2
2+4x2 = 0. (4.2.4)

Figure 4.2.5 shows a sample of 386 points from the uniform distribution on S1. The
associated persistence diagram suggests one connected component, two 1-dimensional
and two 2-dimensional holes. The latter two come from the two sphere-like features of
the variety. The outcome is similar to the diagram from [30, Fig. 6]. Considering that
the diagram in this reference was computed using 1500 points [31], we conclude that the
quality of our diagram is good.

Figure 4.2.5: The left picture shows a sample of 386 points from the variety (4.2.4). The right
picture shows the corresponding persistence diagram.

The second example is the surface S2 given by the equation

144(x41+x42)−225(x21+x22)x23+350x21x
2
2+81x43+x31+7x21x2+3(x21+x1x

2
2)−4x1−5(x32−x22−x2) = 0.
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Figure 4.2.6 shows a sample of 651 points from the uniform distribution on S2. The
persistence diagram on the right suggest one or five connected components. The true
answer is five connected components. The diagram from [30, Fig. 6] captures the correct
homology more clearly, but was generated from a sample of 10000 points [31].

Figure 4.2.6: The left picture shows a sample of 651 points from the variety S2. The right picture
shows the corresponding persistence diagram.

The next example is from a specific application in kinematics. Quoting [30, Sec. 5.3]:
“Consider a regular pentagon in the plane consisting of links with unit length, and with
one of the links fixed to lie along the x-axis with leftmost point at (0, 0). The set of all
possible configurations of this regular pentagon is a real algebraic variety.” The equations
of the configuration space are

(x1+x2+x3)2+(1+x4+x5+x6)2−1 = 0, x2
1+x2

4 = 1, x2
2+x2

5 = 1, x2
3+x2

6 = 1. (4.2.5)

Here, the zeroth homology is of particular importance because if the variety is connected,
“the mechanism has one assembly mode which can be continuously deformed to all possible
configurations” [30]. Figure 4.2.7 shows the persistence diagram of a sample of 1400
points from the configuration space. It suggests that the variety indeed has only one
connected component. We moreover observe eight holes of dimension 1 and one or three
2-dimensional holes. The correct Betti numbers are β0 = 1, β1 = 8, β2 = 1; see [33].

4.3. Algebraic, geometric, and probabilistic tools

In this section we will first define the degree of a real algebraic variety and see why the
number of intersection points of M with a linear space of the right codimension does not
exceed the degree of its ambient variety. Then we recall the coarea formula of integration
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Figure 4.2.7: The picture shows the persistence diagram of a sample of 1400 points from the
variety given by (4.2.5).

and discuss some consequences. Finally, we will see how to sample from ψ(A, b) using
rejection sampling and prove an algorithm for sampling the LA,b in implicit form.

Real algebraic varieties

For the purpose of this chapter, a (real, affine) algebraic variety is a subset V of RN such
that there exists a set of polynomials F1, . . . , Fk in N variables such that V is their set
of common zeros. All varieties have a dimension and a degree. The dimension of V is
defined as the dimension of its subspace of non-singular points V0, which is a manifold.
For the degree we give a definition in the following steps.

An algebraic variety V in RN is homogeneous if for all t ∈ R \ {0} and x ∈ V we have
tx ∈ V. Homogeneous varieties are precisely the ones where we can choose the Fi above
to be homogenous polynomials. Homogeneous varieties live in the (N − 1)-dimensional
real projective space PN−1. This space is defined as the set (RN \ {0})/ ∼, where x ∼ y
if x and y are collinear. It comes with a canonical projection map p : (RN \ 0)→ PN−1.
Then, a projective variety is defined as the image of a homogeneous variety V under p.
Its dimension is dimV − 1.

Similarly, we define complex affine, homogeneous, and projective varieties by replacing R
with C in the previous definitions. We can pass from real to complex varieties as follows.
Let V ⊂ RN be a real affine variety. Its complexification VC is defined as the complex
affine variety

VC := {x ∈ Cn : f(x) = 0 for all real polynomials f vanishing on V}.
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The “all” is crucial here. Consider for instance the variety in R2 defined by x2
1 + x2

2 = 0.
Obviously, this variety is a single point {(0, 0)}, but the set {x ∈ C2 : x2

1 +x2
2 = 0} equals

the set {(t,
√
−1 t) : t ∈ C} and is thus one-dimensional. Nevertheless, the polynomials

x1 = 0, x2 = 0 also vanish on {(0, 0)} and so the complexification of V = {(0, 0)} is
VC = {(0, 0)}. The following lemma is important.

Lemma 4.3.1 (Lemma 8 in [86]). The real dimension of V and the complex dimension of
its complexification VC agree.

The Grassmannian is a smooth algebraic variety G(k,CN ) that parametrizes linear
subspaces of CN of dimension k. Furthermore, k-dimensional affine-linear subspaces
of CN can be seen as (k+ 1)-dimensional linear subspaces of CN+1 and are parametrized
by the affine Grassmannian GAff(k,CN ). A projective linear space of dimension k is the
image of a linear space L ∈ G(k+ 1,CN ) under the projection p. This motivates to define
the projective Grassmannian as G(k,PN−1) := {p(L) : L ∈ G(k + 1,CN )}.

We have gathered all the material to give a precise definition of the degree: let V ⊂ PN−1
C

be a complex projective variety of dimension n. There exists a unique natural number
d and a lower-dimensional subvariety W of G(N − n,PN−1) with the property that for
all linear spaces L ∈ G(N − n,PN−1)\W the intersection V ∩ L consists of d distinct
points [44, Sect. 18]. Furthermore, the number of such intersection points only decreases
when L ∈ W . This number d is called the degree of the projective variety V . The degree of
a complex affine variety V ⊂ CN is defined as the degree of the smallest projective variety
containing the image of V under the embedding CN ↪→ PNC sending x to p([1, x]).

The definition of degree of complex varieties is standard in algebraic geometry. In this
chapter however we are solely dealing with real varieties. We therefore make the following
definition, which is not standard in the literature, but which fits in our setting.

Definition 4.3.2. The degree of a real affine variety V is the degree of its complexification.
The degree of a real projective variety V is the degree of the image of the complexification
of p−1(V) under p.

Using Lemma 4.3.1 we make the following conclusions, after passing from the Grass-
mannians GAff(N − n,RN ) and G(N − n,RN ) to the parameter spaces Rn×N × Rn and
Rn×N .

Lemma 4.3.3. Let V ⊂ RN be an affine variety of dimension n and degree d. Except for
a lower-dimensional subset of Rn×N × RN , all affine linear subspaces LA,b ⊂ RN defined
by LA,b = {x ∈ RN : Ax = b} intersect V in at most d many points.

Let V ⊂ PN−1 be a projective variety of dimension n and degree d. Except for a lower-
dimensional subset of Rn×N , all linear subspaces LA = {x ∈ PN−1 : Ax = 0} ⊂ PN−1

intersect V in at most d many points.
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The coarea formula

The coarea formula of integration is a key ingredient in the proof of Theorem 4.1.1. This
formula says how integrals transform under smooth maps. A well-known special case is
integration by substitution. The coarea formula generalizes this from integrals defined on
the real line to integrals defined on differentiable manifolds.

Let M,N be Riemannian manifolds and dv, dw be the respective volume forms. Fur-
thermore, let h : M → N be a smooth map. A point v ∈ M is called a regular point
of h if Dvh is surjective. Note that a necessary condition for regular points to exist is
dimM≥ dimN .

For any v ∈ M the Riemannian metric on M defines orthogonality on TvM. For a
regular point v of h this implies that the restriction of Dvh to the orthogonal complement
of its kernel is a linear isomorphism. The absolute value of the determinant of that
isomorphism is the normal Jacobian of h at v. Let us summarize this in a definition.

Definition 4.3.4. Let h :M→N be a smooth map and v ∈M be a regular point of h.
Let ( · )⊥ denote the orthogonal complement. The normal Jacobian of h at v is defined as

NJ(h, v) :=
∣∣∣det

(
Dvh |(ker Dvh )⊥

)∣∣∣ .
We also need the following theorem (see, e.g., [14, Theorem A.9]).

Theorem 4.3.5. LetM,N be smooth manifolds with dimM≥ dimN and let h :M→N
be a smooth map. Let w ∈ N be such that all v ∈ h−1(w) are regular points of h. Then,
the fiber h−1(w) over w is a smooth submanifold of M of dimension dimM− dimN
and the tangent space of h−1(w) at v is Tvh

−1(w) = ker Dvh .

A point w ∈ N satisfying the properties in the previous theorem is called regular value
of h. By Sard’s lemma the set of all w ∈ N that are not a regular value of h is a set
of measure zero. We are now equipped with all we need to state the coarea formula.
See [45, (A-2)] for a proof.

Theorem 4.3.6 (The coarea formula of integration). Suppose that M,N are Riemannian
manifolds, and let h :M→N be a surjective smooth map. For every function a :M→ R
that is integrable with respect to the volume measure of M we have∫

v∈M
a(v) dv =

∫
w∈N

(∫
u∈h−1(w)

a(u)

NJ(h, u)
du

)
dw,

where du is the volume form on the submanifold h−1(w).

The following corollary from the coarea formula is important.
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Corollary 4.3.7. Let h : M→N be a smooth surjective map of Riemannian manifolds.

(1) Let X be a random variable on M with density β. Then h(X) is a random variable
on N with density

γ(y) =

∫
x∈h−1(y)

β(x)

NJ(h, x)
dx.

(2) Let ψ be a density on N and for all y ∈ N , let ρy be a density on h−1(y). The
random variable X on M obtained by independently taking Y ∈ N with density ψ and
X ∈ h−1(Y ) with density ρY has density

β(x) = ψ(h(x))ρh(x)(x)NJ(h, x).

Proof. The first part follows directly from the coarea formula. For the second part, it
suffices to note that for measurable U ⊂M we have∫

y∈h(U)

∫
x∈h−1(y)∩U

ψ(h(x))ρh(x)(x) dx dy =

∫
y∈h(U)

∫
x∈h−1(y)∩U

β(x)

NJ(h, x)
dx dy

=

∫
x∈U

β(x) dx,

see also [14, Rem. 17.11].

Sampling from the density on affine-linear subspaces

Our method for sampling from an algebraic manifold involves taking a distribution ϕ on
the parameter space Rn×N × Rn of hyperplanes of the right dimension which is easy to
sample, and turning it into another density ψ. Here, we explain how to sample from ψ
with rejection sampling. In the following we denote elements of Rn×N × Rn by (A, b).

Proposition 4.3.8. Let κ be any number satisfying 0 < κ · sup(A,b) f(A, b) ≤ 1. Consider

the binary random variable Z ∈ {0, 1} with Prob{Z = 1 | (A, b)} = κ f(A, b). Then, ψ is
the density of the conditional random variable ((A, b) | Z = 1).

Proof. We denote the density of the conditional random variable ((A, b) | Z = 1) by λ.
Bayes’ Theorem implies λ(A, b) Prob{Z = 1} = Prob{Z = 1 | (A, b)}ϕ(A, b), which by
assumption is equivalent to

λ(A, b) =
κ f(A, b)ϕ(A, b)

Prob{Z = 1}
.

By the definition of Z we have Prob{Z = 1} = κ E(A,b)∼ϕ f(A, b). Hence,

λ(A, b) =
f(A, b)ϕ(A, b)

E(A,b)∼ϕ f(A, b)
= ψ(A, b).

This finishes the proof.
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Proposition 4.3.8 shows that ψ is the density of a conditional distribution. A way to
sample from such distributions is by rejection sampling : for sampling ((A, b) | Z = 1)
we may sample from the joint distribution (A, b, Z) and then keep only the points with
Z = 1. The strong law of large numbers implies the correctness of rejection sampling.
Indeed, if (Ai, bi, Zi) is a sequence of i.i.d. copies of (A, b, Z) and U is a measurable
set with respect to the Lebesgue measure on Rn×N × Rn, then we have the following
convergence with probability one:

#{i | (Ai, bi) ∈ U , Zi = z, i ≤ n}
#{i | Zi = z, i ≤ n}

=
1
n #{i | (Ai, bi) ∈ U , Zi = z, i ≤ n}

1
n #{i | Zi = z, i ≤ n}

n→∞−−−→ Prob{(A, b) ∈ U , Z = z}
Prob{Z = z}

= Prob(A,b)|Z=z(U).

For sampling Z, however, we must compute a suitable κ. This can be done as follows.
Let d be the degree of the ambient variety of M. We assume we know upper bounds K
for f(x) and C for ‖x‖2, both as x ranges over M, and set

κ =
1

dK

Γ(n+1
2 )

√
π
n+1

1

1 + C
.

Then we have 0 < κf(A, b) ≤ 1 for all (A, b) as needed. With κ, we have everything we
need to carry out the sampling method.

How to obtain the upper bounds K and C? For K, we might just know the maximum
of f . For example, if we want to sample from the uniform distribution, then we may use
f = 1. In more complicated cases, we could approximate max f by repeatedly sampling
(A, b) ∼ ϕ and recording the highest value f takes on the points in the intersection
M∩L(A,b). Casella and Robert [72] call this approach stochastic exploration.

We might know C a priori, for example because we restrict the manifold M to a box in
RN . We can also restrict the manifold to a box after determining by sampling what the
size of the box should be. We could also estimate max ‖x‖2 by sampling as for max f .
Sometimes we can also use semidefinite programming [7] to bound polynomial functions
like ‖x‖2 on a variety. Note that the probability for rejection increases as C increases.
We thus seek a C which is as small as possible. If our given function f is invariant
under translation, we may translate M to decrease C. For instance, sampling from the
uniform distribution on the circle (x1 − 100)2 + (x2 − 100)2 = 1 is the same as sampling
on x2

1 + x2
1 = 1 and then translating by adding (100, 100) to each sample point. The

difference between the two is that for the first variety we need C = 101, whereas for the
second we can use C = 1.
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Sampling linear spaces in explicit form

Sometimes it is useful to sample the linear space LA,b in explicit form, and not in implicit
form Ax = b. For instance, if V is a hypersurface given by an equation F (x) = 0,
then intersecting V with a line u + tv can be done by solving the univariate equation
F (u+ tv) = 0. The next lemma shows how to pass from implicit to explicit representation
in the Gaussian case.

Lemma 4.3.9. Let LA,b = {x ∈ RN | Ax = b} be a random affine linear space given by
i.i.d. standard normal entries for A ∈ Rn×N and b ∈ Rn. Consider another random linear
space

Ku,v1,...,vN−m = {u+ t1v1 + · · · tN−nvN−n | t1, . . . , tN−n ∈ R},

where u, v1, . . . , vN−m are obtained as follows. Sample a matrix U ∈ R(N−n+1)×(N+1)

with i.i.d. standard normal entries, and let(
u
1

)
,

(
v1

0

)
, . . . ,

(
vN−n

0

)
∈ rowspan(U).

Then, we have Ku,v1,...,vN−m ∼ LA,b.

Proof. Consider the linear space L̃A,b := {z ∈ RN+1 | [A,−b]z = 0}. This is a random
linear space in the Grassmannian G(N + 1− n,RN+1). The affine linear space is given as
LA,b := {u+ t1v1 + · · · tN−nvN−n}, where(

u
1

)
,

(
v1

0

)
, . . . ,

(
vN−n

0

)
∈ ker([A,−b]).

Now the kernel of [A,−b] is a random linear space in G(n,RN+1), which is invariant under
orthogonal transformations. By [58] there is a unique orthogonally invariant probability
distribution on the Grassmannian G(n,RN+1). Since rowspan(U) is also orthogonally
invariant, we find that rowspan(U) ∼ ker([A,−b]), which concludes the proof.

4.4. Proofs of Theorem 4.1.1 and Lemma 4.1.2

We begin by giving an alternate description of the function α(x).

Lemma 4.4.1. α(x) =
∫
A∈Rn×N ϕ(A,Ax)|det(A|TxM)|dA.

Proof. Let α′(x) be the right hand side of the formula. Let U ∈ O(N) be an orthogonal
matrix such that Ux = (0, . . . , 0, xN )T and consider the manifold N = U · M. We have
TUxN = UTxM and det(A|TxM) = det(AUT

∣∣
TUxN

). After the change of variables

A 7→ AUT we get

α′(x) =

∫
A∈Rn×N

∣∣∣det(A|TUxN )
∣∣∣ ϕ(A,AUx) dA.
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By definition of the Gaussian density, we have ϕ(A,AUx) = 1
(
√

2π)n
φ(AR), where φ is

the Gaussian density on Rn×N and R = diag(1, . . . , 1,
√

1 + x2
N ) ∈ RN×N . Let us write

B = AR. A change of variables from A to B yields

α′(x) =
1√

1 + x2
N (
√

2π)n

∫
B∈Rn×N

∣∣∣det(BR−1
∣∣
TUxN

)
∣∣∣ φ(B) dB.

Let W ∈ RN×n be a matrix whose columns form an orthonormal basis for TUxN and
write M := R−1W . Then we have det(BR−1

∣∣
TUxN

) = det(BM) and so

α′(x) =
1√

1 + x2
N

√
2π

n
E

B∼φ
|det(BM)| .

We now write EB∼φ |det(BM)| = EB∼φ det(MTBTBM)
1
2 . By [66, Thm. 3.2.5] the

matrix C := MTBTBM ∈ Rn×n is a Wishart matrix with covariance matrix MTM .
By [66, Thm. 3.2.15], we have Edet(C)

1
2 = det(MTM)

1
2

1√
π

√
2
n
Γ(n+1

2 ). Altogether, this

shows that

α′(x) =
det(MTM)

1
2√

1 + x2
N

Γ
(
n+1

2

)
√
π
n+1 .

Moreover, we have

MTM = W TR−TR−1W

= W T diag(1, . . . , 1, 1
1+x2N

)W

= 1− 1
1+x2N

W diag(0, . . . , 0, x2
N )W.

The second summand in the last expression is a rank-one matrix with the single non-zero

eigenvalue − ||W
TUx||2

1+||Ux||2 . Taking determinants we get

det(MTM) = 1− ||W
TUx||2

1 + ||Ux||2
=

1 + ||Ux||2 − ||W TUx||2

1 + ||Ux||2
=

1 + ||x||2 − ||ΠTxMx||2

1 + ||x||2
,

where ΠTxM denotes the orthogonal projection onto the tangent space. Since we have
||x||2 − ||ΠTxMx||2 = 〈x,ΠNxM x〉, this implies

α′(x) =

√
1 + 〈x,ΠNxM x〉

1 + ‖x‖2
Γ
(
n+1

2

)
√
π
n+1 = α(x).

This concludes the proof.

We are now prepared to prove Theorem 4.1.1.
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Proof of Theorem 4.1.1. We first prove the first part. The support of f(A, b) is a full
dimensional subset of Rn×N × Rn and it is contained in the complement of the set of all
(A, b) for which M∩LA,b = ∅. We let X denote the interior of the support of f(A, b), so
that E(A,b)∼ϕ f(A, b) =

∫
X f(A, b)ϕ(A, b)d(A, b).

Let π : Rn×N × M → X be the map sending a pair (A, x) to (A,Ax). We have
D(A,x)π (Ȧ, ẋ) = (Ȧ, Ȧx + Aẋ), so the derivative of π can be identified with the ma-
trix

(
1 0
∗ A
)
. This shows that NJ(π, (A, x)) = |det(A|TxM)|. Therefore, by Theorem 4.3.6,

E
(A,b)∼ϕ

f(A, b) =

∫
Rn×N×M

f(x)

α(x)
| det(A|TxM)|ϕ(A,Ax) d(A, x).

The projection Rn×N×M→M on the second factor has normal Jacobian one everywhere.
Applying Theorem 4.3.6 again yields

E
(A,b)∼ϕ

f(A, b) =

∫
M

f(x)

α(x)

(∫
Rn×N

| det(A|TxM)|ϕ(A,Ax) dA

)
dx =

∫
M
f(x)dx,

the second inequality by Lemma 4.4.1. This proves the first part.

Now, we prove the second part, where we assume that f : M → R>0 is nonnegative.

Recall that ψ(A, b) = ϕ(A,b)f(A,b)

Eϕ(f)
. Since Eϕ(f) =

∫
M f(x)dx is positive and finite by the

first part of the theorem, we find that ψ is a well defined probability density. The support
of ψ is contained in the closure of X and therefore M∩LA,b is almost surely non-empty
and finite.

Let Y = (A, x) ∈ Rn×N ×M be the random variable defined by first choosing (A, b) ∼ ψ
and then taking x ∈M∩LA,b with probability f(x)α(x)−1f(A, b)−1. By construction,
π(Y ) ∼ ψ. We use Corollary 4.3.7 (2) and find that Y has density

β(A, x) =
ψ(A,Ax)f(x)NJ(π, (A, x))

α(x)f(A,Ax)
.

Recall that NJ(π, (A, x)) = |det(A|TxM)| and that the projection Rn×N ×M→M on
the second factor has normal Jacobian one everywhere. Therefore, by Corollary 4.3.7 (1),
the random point x ∈M has density γ with

γ(x) =

∫
A∈Rn×N

β(A, x) dA

=
f(x)

α(x)

∫
A∈Rn×N

ψ(A,Ax)| det(A|TxM)|
f(A,Ax)

dA

=
f(x)

α(x)Eϕ(f)

∫
A∈Rn×N

ϕ(A,Ax)|det(A|TxM)| dA.

Using Lemma 4.4.1 yields γ(x) = f(x)

Eϕ(f)
. This finishes the proof of Theorem 4.1.1.
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Next, we prove the lemma about the rate of convergence of our estimator.

Proof of Lemma 4.1.2. First, we have the bound α(x) ≥ 1
1+supx∈M ‖x‖2

Γ(n+1
2 )

√
π
n+1 . Let d be

the degree of the ambient variety of M. With probability one M∩LA,b consists of at
most d points and so we have

E
(A,b)∼ϕ

f(A, b)2 = E
(A,b)∼ϕ

 ∑
x∈M∩LA,b

f(x)

α(x)

2

≤ E
(A,b)∼ϕ

 ∑
x∈M∩LA,b

|f(x)|
α(x)

2

≤ E
(A,b)∼ϕ

 ∑
x∈M∩LA,b

supx∈M |f(x)|
infx∈M α(x)

2

≤ d2(1 + sup
x∈M

‖x‖2)2 πn+1

Γ
(
n+1

2

)2 sup
x∈M

f(x)2.

We also have σ2(f) ≤ E(A,b)∼ϕ f(A, b)2, and therefore

σ2(f) ≤ d2(1 + sup
x∈M

‖x‖2)2 πn+1

Γ
(
n+1

2

)2 sup
x∈M

f(x)2 (4.4.1)

is finite. We may therefore use Chebyshev’s inequality to deduce that

Prob

{∣∣∣∣E(f, k)−
∫
M
f(x) dx

∣∣∣∣ ≥ ε} ≤ σ2(f)

ε2k
. (4.4.2)

This finishes the proof.

4.5. Sampling from projective manifolds

In this section we prove a variation of Theorem 4.1.1 for projective algebraic manifolds.

Real projective space PN−1 from Section 4.3 is a compact Riemannian manifold with
a canonical metric, the Fubini-Study metric. Namely, let p : RN\{0} → PN−1 be the
canonical projection. Restricted to the unit sphere SN−1, the projection p identifies
antipodal points. We define a subset U ⊂ PN−1 to be open if and only if p|−1

SN−1 (U) is
open. This gives PN−1 the structure of a differential manifold. The Riemannian structure
on PN−1 is defined as 〈ȧ, ḃ〉 := 〈Dxp

−1ȧ,Dxp
−1ḃ〉 for ȧ, ḃ ∈ TxPN−1. This metric is called

the Fubini-Study metric, and it induces the standard measure on PN−1.
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We say that M is a projective algebraic manifold if it is an open submanifold of the
smooth part of a real projective variety V ⊂ PN−1. We assume M to be n-dimensional,
and consider a function f : M → R≥0 with a well-defined scaled probability density
f(x)/

∫
M f(x)dx. For A ∈ Rn×N , define the linear space LA = {x ∈ PN−1 | Ax = 0} and

write
f(A) :=

∑
x∈M∩LA

f(x).

In this section, we denote by ϕ` the density of the multivariate standard normal distribu-
tion on R`.

Theorem 4.5.1. In the notation introduced above:

(1) Let f be an integrable function on M. We have∫
M
f(x) d(x) = vol(Pn) E

A∼ϕn×N
f(A).

(2) Let f be nonnegative and assume that the integral
∫
M f(x) d(x) is finite and nonzero.

Let X ∈ M be the random variable obtained by choosing A ∈ Rn×N with probability

ψ(A) := ϕ(A) f(A)

EA∼ϕn×N f(A)
and one of the finitely many points X ∈M∩LA with probability

f(x)/f(A). Then X is distributed according to the density f(x)/
∫
M f(x)dx.

Remark 4.5.2. In [54, Sec. 2.4] Lairez proved a similar theorem for the uniform distribu-
tion on complex projective varieties.

Sampling LA with A ∼ ϕn×N yields a special distribution on G(N −n−1,PN−1). By [58]
there is a unique orthogonally invariant probability measure ν on the Grassmannian
G(N − n − 1,PN−1). Since the distribution of the kernel of a Gaussian A is invariant
under orthogonal transformations, the projective plane LA = {x ∈ PN−1 : Ax = 0} has
distribution ν.

Furthermore, setting f = 1 in Theorem 4.5.1 gives the formula

vol(M) = vol(Pn) E
A∼ϕn×N

|M ∩ LA|.

This is the kinematic formula for projective manifolds from [45, Thm. 3.8] in disguise.

Before we can prove Theorem 4.5.1, we have to prove an auxiliary lemma, similar to
Lemma 4.4.1.

Lemma 4.5.3. For any x ∈M we have∫
A∈Rn×N :Ax=0

| det(A|TxM)|ϕn×N (A) dA =
1

vol(Pn)
.

In particular, the integral is independent of x.
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Proof. Let H(x) := {A ∈ Rn×N | Ax = 0}. It is a linear subspace of Rn×N of codimen-
sion n. Let U ∈ RN×n be a matrix whose columns form an orthonormal basis for TxM,
so that det(A|TxM) = det(AU). Furthermore, let O ∈ RN×N be an orthogonal matrix

with Ox = e1, where e1 = (1, 0, . . . , 0)T ∈ RN . Then, H(e1)O = H(x). Making a change
of variables A 7→ AO we get∫

A∈H(x)
|det(A|TxM)|ϕn×N (A) dA =

∫
A∈H(e1)

|det(AOU)|ϕn×N (AO) dA. (4.5.1)

We have ϕn×N (AO) = ϕn×N (A), because the Gaussian distribution is orthogonally
invariant. Moreover, any A ∈ H(e1) is of the form A = [0, A′] with A′ ∈ Rn×(N−1), and
we have ϕn×N (A) = 1√

2π
nϕn×(N−1)(A

′). Let us denote by O′ the lower (N − 1)× n part

of OU , so that AOU = A′O′. It follows that (4.5.1) is equal to

1√
2π

n

∫
A′∈Rn×(N−1)

| det(A′O′)|ϕn×(N−1)(A
′) dA′.

We show that O′ has orthonormal columns: since M⊂ SN−1, the tangent space TxM is
orthogonal to x, which implies UTx = 0. Furthermore, eT1 OU = (UTOT e1)T = (UTx)T .
It follows that the first row of OU contains only zeros and so the columns of O′ must
be pairwise orthogonal and of norm one. A standard normal matrix multiplied with a
matrix with orthonormal columns is also standard normal, so we have∫

A′∈Rn×(N−1)

|det(A′O′)|ϕn×(N−1)(A
′) dA′ =

∫
M∈Rn×n

| det(M)|ϕn×n(M) dM.

This implies ∫
A∈H(x)

ϕn×N (A)| det(A|TxM)|dA =
EM∼ϕn×n | det(M)|

√
2π

n .

Finally, we compute vol(Pn) = 1
2vol(Sn) =

√
π
n+1

Γ(n+1
2

)
, and by [66, Thm. 3.2.15], we have

EM∼ϕn×n det(MTM)
1
2 = 1√

π

√
2
n
Γ(n+1

2 ). This finishes the proof.

Proof of Theorem 4.5.1. We define I := {(A, x) ∈ Rn×N × M | Ax = 0}. It is an
algebraic subvariety of Rn×N ×M. One can show that I is smooth, but for our purposes
it suffices to integrate over the dense subset of I that is obtained by removing potential
singularities from I.

Let π1 and π2 be the projections from I to Rn×N and M, respectively. Applying
Theorem 4.3.6 first to π1 and then to π2 yields

E
A∼ϕn×N

f(A) =

∫
M
f(x)

(∫
A∈π1(π−1

2 (x))
ϕn×N (A)

NJ(π2, (A, x))

NJ(π1, (A, x))
dA

)
dx.
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By [8, Sec. 13.2, Lemma 3], the ratio of normal Jacobians in the integrand equals
| det(A|TxM)|. We get

E
A∼ϕn×N

f(A) =

∫
M
f(x)

(∫
A∈π1(π1

2(x))
ϕn×N (A)|det(A|TxM)| dA

)
dx

=
1

vol(Pn)

∫
M
f(x)dx;

the second equality by Lemma 4.5.3. This proves the first part.

Let now Y ∈ I be the random variable obtained by choosing A ∈ Rn×N with distribution

ψ(A) = ϕ(A) f(A)

EA∼ϕn×N f(A)
and, independently of A, a point x ∈ M ∩ LA with probability

f(x)f(A)−1. Then, by construction, X = π2(Y ). Let γ be the density of X. Applying
the first part of Corollary 4.3.7 to π1 and then the second part to π2, we have

γ(x) =

∫
(A,x)∈π−1

2 (x)

ψ(A)f(x)NJ(π2, (A, x))

f(A)NJ(π1, (A, x))
dA

=
f(x)

Eϕ(f)

∫
(A,x)∈π−1

2 (x)
ϕ(A) | det(A|TxM)|dA

=
f(x)

Eϕ(f)

1

vol(Pn)

=
f(x)∫

M f(x) dx
;

the last penultimate equality again by Lemma 4.5.3, and the last equality by the first
part of the theorem. This finishes the proof.

4.6. Previous methods

We now briefly review the established use of kinematic formulae in applications and
compare our method to them.

In [9], the authors use a Crofton-type formula for curves to establish a link between a
discrete cut metric on a grid, which is an object in combinatorial optimization, and an
Euclidean metric on R2. This is then applied to a problem in image segmentation.

In [56], the authors use the Cauchy formula and Crofton formula to compute Minkowski
measures (e.g. surface area, perimeter) of discrete binary 2D or 3D pictures given as a grid
of white or black pixels. Since the picture is discrete, the set of lines is also appropriately
discretized, as well as Crofton’s formula itself. So the difference to our method here lies
in the discretization. In [57], a more efficient way to evaluate the discretized Crofton’s
formula is proposed, using run-length encoding.
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In [61], the authors use Crofton’s formula to approximate the volume of a body M.
They use a different sampling method, which goes as follows: (1) Find a compact body E
containing M, of known volume vol(E), such that the space of lines intersecting E is
approximately the same as the space of lines intersecting M. For example, E could be
a sphere containing M. (2) Sample uniformly from the set of lines that intersect E . (3)
Compute the total number of intersection points of all the sampled lines with E (call it g)
and with M (call it h). (4) Approximate the volume of M as h

g vol(E).

As the authors write in [61], this method can only give an approximation for the volume
of M. Its accuracy depends on the choice of E , i.e. on how well the uniform distribution
on the set of lines intersecting E approximates the same with respect toM. On the other
hand, the method presented in this chapter is guaranteed to converge to the true volume
given enough samples. We tested both methods on the curve M from (4.2.1) as well as
on the ellipse M1 = {x ∈ R2 | (x/3)2 + y2 − 1 = 0}, choosing E to be the centered circle
of radius 3. We plotted the results in Figure 4.6.1.

Figure 4.6.1: The plot shows estimates for the volumes of two curvesM obtained from empirical
estimates for 1 ≤ k ≤ 105 samples. On the left, M is the curve from (4.2.1). On the right, M is
the ellipse {x ∈ R2 | (x/3)2 + y2 − 1 = 0}. Its volume is known and shown by the black line. The
blue curve shows our method, and the red curve shows the method from [61], where we have used
the circle of radius 3 for E . Our method is guaranteed to converge to the true volume of M for
k →∞, while the other method is not, as exemplified by the plot. Our method seems to converge
at least as quickly as the other method, if not slightly faster.

Finally, let us briefly review the references [62, 63]. In these works the authors derive
MCMC methods for sampling M by intersecting it with random subspaces moving
according to the kinematic measure in RN . This is related to our discussion from the
introduction, where we proposed sampling from ψ(A, b) using MCMC methods. Taking
this approach and comparing it to [62,63] is left for future work.

One feature of the implementation we described is that it generates independent samples
from the density ψ(A, b) by rejection sampling, hence independent points x ∈M. As we
made experiments, we observed some downsides of our method. Namely, our method
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becomes slow when the degree of the variety is large in which case it is not easy to find a
good κ, and the rejection rate in the sampling process becomes infeasibly large.

But we could also sample from ψ(A,B) using an MCMC method with the goal of
improving the rejection rate, at the cost of introducing dependencies between samples.
In contrast to the known MCMC methods for nonlinear manifolds, our method would
employ MCMC on a flat space. We name using MCMC methods for sampling ψ(A,B)
as a possible direction for future research.
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5. Mathematics in the sciences

In this expository chapter I describe two applied projects I worked on from the mathe-
matical perspective. In both projects, I helped develop the mathematical theory. Usually,
applications do not use contemporary theoretical mathematics. Nevertheless, it is inter-
esting to see how mathematical thinking interfaces with research in other fields. My two
example applications both deal with statistical modeling, the first in soil ecology and the
second in the more abstract nonparametric statistics.

5.1. A Bayesian network in soil ecology

Soil ecologists are interested in the soil as an ecosystem. In each square centimeter of
soil there exist a multitude of fungal and bacterial species. They respond to various
environmental pressures and in turn influence the above-ground ecosystem by governing
plant growth. The diversity of these species is an important characteristic of the ecosystem.
In ecology, it is measured by two numbers that can be calculated from a sample of the
soil called alpha and beta diversity.

The article [43] discusses the influence of various climatic factors on these diversity
measures, among others. We try to predict how the soil ecosystem diversity will change
in response to global climate change. For this, we consider a set of factors related to
climate that could possibly have an influence on biodiversity. Our model sets up a web of
causal relationships between the factors that influence alpha diversity. It is represented
by the graph in Figure 5.1.1.

The statistical model associated to such a graph is called a structural equation model.
It is the continuous version of the discrete Bayesian networks introduced in Section 3.2.
Each node of the graph corresponds to a real random variable whose name is noted in
parentheses in Figure 5.1.1. In the model, we assume that every random variable is a
linear expression in the variables pointing to it. For the alpha diversity measure αbact,
the model postulates

αbact = λelev,alpha Ielev + λveg,alpha Iveg + λpV,alphaMp.veg + λpH,alphaMpH

+ λcarb,alpha Icarb + λtext,alpha Itext

where the λ are real model parameters.

In our project, we make predictions for αbact based on the projected values for the
variables with no incoming edges (the I). These are in turn based on the climate change
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Figure 5.1.1: A Bayesian network that represents possible causal relationships between various
environmental factors that influence bacterial alpha diversity. Thicker arrows indicate stronger
correlations, dashed arrows indicate negative correlations.

scenarios described in [71]. The first task is to find the parameters λ. This can be
accomplished by a chain of multivariate regressions following a topological ordering of
the graph. In concrete terms, this means first estimating the parameters associated to the
edges pointing to Mp.veg, then the ones pointing to MpH , and finally the ones pointing
to αbact, respectively using the previously found estimators.

To make predictions based on these parameters, it is desirable to have a single equation
with αbact on the left-hand side and a linear expression in the I on the right-hand side.
Of course, this is accomplished by substituting the linear expressions for Mp.veg and
MpH into the formula for αbact above. The predictions then are made by evaluating the
expression for αbact using the values of the I from the climate change scenarios.

An important decision when using structural equation models is what network to use.
Which edges should there be and what should their direction be? In our project, we base
our model selection on expert knowledge, which means using established knowledge about
the causal relationships between each variable pair to draw the arrows of the graph. This
approach first gives more arrows than the ones depicted. We then eliminate the arrows
that after an initial parameter estimation we find to be (near) zero or not statistically
significant. We arrive at the final graph depicted in Figure 5.1.1.

Another way for deciding the graph structure is learning it from the data alone. The
standard algorithm to do so is called the PC algorithm. In general however, the PC
algorithm returns multiple candidate graphs that it cannot distinguish from each other
based only on the data. Such candidate graphs are said to lie in the same Markov
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equivalence class. For example, the graphs

A→ B and A← B

belong to the same Markov equivalence class even though they express opposite causal
relationships. The PC algorithm also has more fundamental limitations, discussed in
detail in [85].

In our project we use a dataset of 231 soil samples from a wide variety of ecosystems
around the world. The samples were collected between 2003 and 2015. They contain
information on DNA sequencing for bacteria and fungi that in particular determine the
values of the diversity measures. The data incorporates many vegetation types, climatic
ranges, and soil properties.

Using our structural equation model on the dataset, we predict an increase in alpha
diversity and a decrease in beta diversity in response to man-made climate change. Of
course, this preliminary prediction has to be corroborated by new data. Samples of soil
ecosystems are difficult to collect and process. With our model and predictions about
the relationship between the climate and the soil ecosystem, we hope to encourage this
necessary field work.

5.2. Polynomials in nonparametric regression

Boundary regression models and their variants are used to estimate the frontier, or
boundary, of a data set, beyond which no new data is expected to appear. They are
used in the field of data envelopment analysis [22] to evaluate the technical efficiency
of a production unit. This modeling technique has many applications, for instance in
health care, supply chain management, energy systems, and the social sciences. The
mathematical foundations required for applying these models are developed in large part
by the field of nonparametric statistics.

The basic problem of regression in statistics is to estimate a function g : Rq → R based
on observations (Xi, Yi) ∈ Rq × R under the assumption

Yi = g(Xi) + εi.

Here, Xi and εi are random variables that may be subjected to various constraints
depending on the problem. In [76], we study the nonparametric boundary regression
model and propose a method for estimating g in that setting.

In the model, the space Rq is replaced by the bounded [0, 1]q. We assume g to be in the
Hölder space Cβ

∗,δ((0, 1)q), where β∗ ∈ N and δ ∈ (0, 1]. We further assume the errors εi
to be i.i.d. and to always satisfy εi ≤ 0. More precisely, we assume that the cumulative
density function F of the errors satisfies

(1− F (y)) = c|y|α + r(y) for all y < 0,
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where α, c > 0 and r(y) = o(|y|α) when y ↗ 0. Figure 5.2.1 depicts an example of such a
model where q = 1.

Figure 5.2.1: Example of the samples generated by a univariate boundary regression model. Here
we have g(x) = (x− 0.5)3 + 2 and the errors ε are distributed on according to the cumulative
density function y 7→ exp(y0.5) on (−∞, 0)

The article [50] proposes a method to estimate g in the case where the inputs Xi

are univariate, that is when q = 1. Our contribution is to solve the same problem
in the multivariate case. Both solutions use the same general strategy. To define the
approximated value ĝ(x) of g at the point x, first approximate g by a polynomial P of
degree β∗ in a neighborhood of x, then set ĝ(x) = P (x).

In our article, we define P as the solution to a linear optimization problem where the
problem space is the finite dimensional vector space of all polynomials of degree β∗. The
reader is referred to the article for more details.

To analyze the convergence rate of the estimator ĝ, it was important to prove a multivariate
version of Lemma 6.1 in [50]. Intuitively, this lemma is about controlling the values of a
polynomial function P : [0, 1]→ R by considering the restriction of the polynomial to a
well-chosen ball.

In [50], the authors prove the lemma by passing to the complex numbers and using the
fundamental theorem of algebra, which is not available in multiple dimensions. In [76],
we prove the following generalization without passing to the complex numbers.

Lemma 5.2.1. Let β∗ and q be natural numbers. There exist positive real numbers δ, c
such that for all polynomial functions P : [0, 1]q → R of degree β∗ with non-negative
integral over [0, 1]q there exists a δ-ball Bδ ⊆ [0, 1]q with respect to the maximum norm
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such that P ≥ 0 on Bδ and
inf
Bδ
P ≥ c · sup

[0,1]q
|P |.

Intuitively, Lemma 5.2.1 can be explained as follows. The zero set of a polynomial defined
on [0, 1]q has measure zero, so we can find a ball Bδ contained in its complement. With
some effort, we can prove that we may fix δ at a value that works for all polynomials of
a given degree β∗, so long as we are allowed to move the ball Bδ. Lemma 5.2.1 states the
even stronger fact that when the integral of P is non-negative and |P | has supremum
one on [0, 1]q we can make the smallest value of P on Bδ greater than a constant that
does not depend on P , only on its degree.

The proof of Lemma 5.2.1 rests on the fact that bounded polynomials of supremum one
are Lefschetz continuous with Lefschetz constant only depending on their degree. More
precisely, for all polynomial functions P : [0, 1]q → R of degree β∗ and all x, y ∈ [0, 1]q we
have

|P (x)− P (y)| < L · ||x− y|| · sup |P |.

with L = 4(β∗)2√q. For the rest of the proof, the reader is referred to [76].

Using this lemma and the definition of ĝ, we establish the deterministic part O(hβn) of
the rate of convergence equality

sup
x∈[0,1]q

|ĝ(x)− g(x)| = O(hβn) +OP

((
log(n)

nhqn

)1/α
)
,

while we establish the random part OP by other methods.

In sum, our project is about generalizing a univariate regression technique to a multivariate
one. As it turns out, proving that this is sound requires something other than a straight
generalization of the proofs. The crucial Lemma 5.2.1 has a satisfyingly elementary proof
that still uses theorems about polynomials in an essential way.

5.3. Conclusion

Where to go from here? The two applied projects presented in this chapter are part of
much broader research stories. Algebraic geometry can contribute to both.

The structural equation models from Section 5.1 are part of the broader story of causality.
The main characters of this story are tools such as graphical models, Bayesian networks,
and the staged trees from Section 3.2. These graphical tools generate algebraic statistical
models that can be probed for algebraic properties. In particular, staged trees are a
versatile new tool for modeling discrete sequences of events. Here are three simple but
important questions to advance the theory of staged trees.
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(1) Are staged trees exponential families? An affirmative answer would unlock the
well-understood theory of exponential families for the study of staged tree models.

(2) Can we reconstruct a Bayesian network from its staged tree? If so, we could more
easily translate between the two types of tool.

(3) Can we use staged trees for causal discovery? This would greatly enhance staged
trees’ capacity for modeling causality.

The boundary regression model from Section 5.2 is part of the broader story of statistical
learning. Nowadays, the protagonist of this story is the neural network. Often, the space
of functions defined by a neural network is a semialgebraic set. In this setting, or in the
tamer setting of nonparametric boundary regression, algebraic geometry can help answer
the following questions.

(1) In [76], we use a linear optimization problem to define our estimator for the boundary
regression model. When does a unique solution exist?

(2) Can we fully understand the critical locus of the loss function of a neural network?
This would help explain why its optimization is not hindered by local minima.

Researchers in Algebraic Statistics will continue developing bridges between theory and
application in the coming years. My participation in the field will in particular involve
studying the ML degree of Gaussian statistical models. Here, a promising Ansatz is to
consider the moduli space of complete quadrics. This classical object from algebraic
geometry contains the set of Gaussian models as a subset. Here are two natural questions
in this line of research.

(1) Can we classify all Gaussian models with ML degree one? This is desirable for the
same reasons as the discrete version of this question raised in Section 3.5.

(2) Can we solve the ML degree problem for linear covariance models by turning it
into an intersection theory problem in the space of complete quadrics?

In the two projects presented in this chapter, I did not use tools from algebraic geometry.
Instead, my support role as a mathematician was to help build the mathematical theory
and ensure it stands on solid ground. I believe this is as valuable to science as basic
mathematical research. The future will bring many fruitful collaborations like these to
the researcher who seeks them out.
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A. Appendix: A lemma on the ML degree

The following lemma implies that the maximum likelihood degree of a discrete or
continuous parametrized algebraic model is well-defined. We use the language of schemes
for precision.

Lemma A.1. Let M⊆ N be an algebraic model with rational score equations. Let NC be
integral. For general y ∈ NC, the number of solutions to the score equations is independent
of y.

Proof. Let x and y denote the coordinates of MC and NC, respectively. Write the
score equations as `j = pj/qj with pj , qj ∈ R[x, y, λ]. Consider the quasi-affine variety
V ⊆ MC × NC × Cr defined as the set of triples (x, y, λ) such that p(x, y, λ) = 0 and
q(x, y, λ) 6= 0. Let α : V → NC denote the second projection. The number of solutions to
the score equations for general y is the number of elements, counted with multiplicities,
of the fiber Vy = α−1(y). More precisely, it is the number dy :=

∑
x∈α−1(y) dimC(OVy ,x).

A general fiber Vy of α is of the same dimension as the generic fiber Vη [81, Lemma 05F7].
If the latter is positive, then a general fiber has infinitely many points and we are done.
So, we assume that the generic fiber is zero-dimensional and thus, since α is of finite type,
that it contains a finite number of points. By [81, Lemma 02NW], we may assume that α
is finite. By generic flatness [81, Proposition 052A], we may assume that α is flat. Finally,
since NC is connected the map α has constant degree and we may apply [41, Prop. 12.21]
to obtain degα = dy for all y.
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Springer-Verlag New York, 2017.

[4] Ulrich Bauer. Ripser: efficient computation of Vietoris-Rips peristence barcodes.
ArXiv:1908.02518, 2019.

[5] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. Julia: a fresh approach
to numerical computing. SIAM Review 59 (2017), pp. 65–98.

[6] Jacob Bien and Robert J. Tibshirani. Sparse estimation of a covariance matrix. Biometrika
98 (2011), pp. 807–820.

[7] Grigoriy Blekherman, Pablo A. Parrilo, and Rekha R. Thomas, editors. Semidefinite Opti-
mization and Convex Algebraic Geometry. SIAM, 2013.

[8] Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Complexity and Real Compu-
tation. Springer-Verlag New York, 1998.

[9] Yuri Boykov and Vladimir Kolmogorov. Computing geodesics and minimal surfaces via
graph cuts. Proceedings Ninth IEEE International Conference on Computer Vision,
pp. 26–33, 2003.
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