
Advances in Applied Mathematics 170 (2025) 102928

Contents lists available at ScienceDirect

Advances in Applied Mathematics  

journal homepage: www.elsevier.com/locate/yaama

Classifying one-dimensional discrete models with 

maximum likelihood degree one

Arthur Bik a, Orlando Marigliano b,∗

a New York, NY, United States of America
b University of Genoa, Via Dodecaneso 35, 16146 Genova GE, Italy

a r t i c l e i n f o a b s t r a c t 

Article history:
Received 30 April 2024
Received in revised form 7 April 
2025
Accepted 10 June 2025
Available online xxxx

MSC:
62R01
05E14
05C57

We propose a classification of all one-dimensional discrete 
statistical models with maximum likelihood degree one based 
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of ‘fundamental models’ using a finite number of simple 
operations. We introduce ‘chipsplitting games’, a class of 
combinatorial games on a grid which we use to represent 
fundamental models. This combinatorial perspective enables 
us to show that there are only finitely many fundamental 
models in the probability simplex Δn for n ≤ 4.
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1. Introduction

A discrete statistical model is a subset of the simplex Δn := {p ∈ Rn+1
≥0 | ∑︁ν pν = 1}

of probability distributions on n + 1 events for some n ∈ N. In algebraic statistics, we 
are interested in models which are algebraic, meaning that the model is the intersec-
tion of Δn and some semialgebraic set in Rn+1. Here, models with maximum likelihood 
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degree one are of special interest because for these, the maximum likelihood (ML) esti-
mation problem is a rational function in the entries of the observed data, and therefore 
algebraically simplest.

Example 1.1. Consider the set Δ2 of probability distributions on three events and of this, 
the subset ℳ⊥ ⊥ that models throwing a biased coin twice and recording the number of 
times it shows heads. An empirical observation is then represented by a triple u =
(u0, u1, u2) of numbers indicating the number of times we observed the result of no 
heads, one head, and two heads, respectively. From this data, the most reasonable guess 
for the probability θ that the coin will show heads is

θ = 2u2 + u1

2(u2 + u1 + u0)
.

More precisely, this expression maximizes the likelihood

Prob(u = (u0, u1, u2) | θ) =
(︃

u0, u1, u2

u0 + u1 + u2

)︃
(1 − θ)2u0θu1(1 − θ)u1θ2u2

of observing the empirical distribution u given the parameter θ. For this reason, the 
above expression for θ is called the maximum likelihood (ML) estimate of ℳ⊥ ⊥ for the 
data u. Since this expression is a rational expression in the entries of u, the model ℳ⊥ ⊥
has ML degree one.

In general, the ML degree of an algebraic model can be higher than one. In this case, 
the ML estimate of the model for generic data u is obtained by taking a finite field 
extension of C(u) of correspondingly high degree. Thus, the ML degree is a measure of 
the algebraic complexity of the ML estimate. An ML degree of one indicates the simplest 
case where no field extension is taken.

Algebraic statistical models with ML degree one have been a recurring object of study 
in recent years. The problems considered range from identifying ML degree one members 
of a given family of models to studying properties, parametrizations, and normal forms 
of ML degree one models in general. Articles have been written both on the discrete [3, 
4,6,8,10] and Gaussian [1,2,7,13] case.

In particular, two articles [8,10] study discrete models of ML degree one in gen-
eral. These works explain which form these models may take and provide systematic 
parametrizations. However, a general classification seems out of reach. More specifically, 
we would like to divide the set of all discrete algebraic models with ML degree one 
contained in the simplex Δn into finitely many easy to understand families. But at the 
time [8] was published, there was no way to do so even for the simplest case n = 2.

In this paper we provide such a classification for n = 2, and extend this to n = 3, 4
in the case where the models in question are one-dimensional as algebraic varieties. 
Since one-dimensional discrete algebraic models with maximum likelihood degree one 
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are the focus of this paper, we will refer to these models often. We call them “rational 
one-dimensional models” for short, sometimes shortening this further to “R1d models”.

We start by stratifying the set of rational one-dimensional models in Δn by their 
degree as algebraic curves. We find that for a fixed d, there are essentially finitely many 
ways to construct rational one-dimensional models of degree ≤ d. We make this precise 
by introducing the notion of fundamental models, from which all other rational one-
dimensional models can be constructed. Since there are finitely many fundamental models 
of degree ≤ d, we are satisfied with our classification if we can find an upper bound for 
deg(ℳ), where ℳ ranges over all rational one-dimensional models in Δn. This would 
imply that there are finitely many fundamental models in Δn.

Our main theorem gives such an upper bound for rational one-dimensional models 
contained in Δ2, Δ3, and Δ4.

Theorem 1.2. Let n ≤ 4 and let ℳ ⊆ Δn be a one-dim. discrete model with ML degree 
one. Then

deg(ℳ) ≤ 2n− 1.

To prove Theorem 1.2 we use a strategy inspired by the literature on chip-firing [11], 
which motivates the formulation of an equivalent combinatorial problem. In Proposi-
tion 2.2, we observe that rational one-dimensional models admit a parametrization

p : [0, 1] → Δn, t ↦→ (wνt
iν (1 − t)jν )nν=0

which enables us to represent these models as sets of integers on a grid.

Example 1.3 (Example   1.1 continued). The model ℳ⊥ ⊥ ⊆ Δ2 is parametrized by the 
function p(t) = (t2, 2t(1 − t), (1 − t)2) and can be represented by the following picture.

In such a picture, the grid point with coordinates (i, j) represents the monomial ti(1 −
t)j . The integer entry at that point represents the coefficient of that monomial in the 
parametrization, where a dot represents the entry 0. The entry −1 at the point (0, 0)
indicates that the coordinates of the parametrization add up to 1. More precisely, it is 
the coefficient of the constant term of the polynomial

1 · t2 + 2 · ts + 1 · s2 − 1

which becomes zero after the substitution s ↦→ (1 − t). We think of these integer entries 
as ‘chips’ on the grid, allowing for negative chips. Thus we call such a representation a 
chip configuration.
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Any chip on the grid can be split into two further chips, which are then placed directly 
to the north and to the east of the original chip. We can ‘split a chip’ where there are 
none by adding a negative chip. Finally, we can unsplit a chip by performing a splitting 
move in reverse. Starting from the zero configuration, these chipsplitting moves can be 
used to produce models. For instance, we get the model ℳ⊥ ⊥ by performing chipsplitting 
moves at (0, 0), (1, 0), and (0, 1), as visualized below.

In this view, Theorem 1.2 becomes a combinatorial statement about the possible out-
comes of these sequences of chipsplitting moves, which we call chipsplitting games.

Outline

In the following Preliminaries section we introduce chipsplitting games and formulate 
the combinatorial equivalent of Theorem 1.2. In Section 2 we explain how to use Theo-
rem 1.2 to classify all rational one-dimensional models in Δn for n ≤ 4. In Section 3 we 
introduce combinatorial tools for proving our main result. In Section 4 we explain the 
connection between rational one-dimensional models and chipsplitting games. In Sec-
tions 5- 7 we prove Theorem 1.2 in the language of chipsplitting games for n ≤ 2, n = 3, 
and n = 4, respectively. In Section 8 we discuss examples, computations, and future 
directions.

Code

We use the computer algebra system Sage [14] to assist us in our proofs, espe-
cially in Section 7, and to implement our algorithm for finding fundamental models 
in Section 8. The code is available on MathRepo at https://mathrepo.mis.mpg.de/
ChipsplittingModels/.
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Preliminaries

For indices i and j, the Kronecker delta symbol δij equals 1 if i = j and 0 otherwise. 
For sets A and B we denote the set of functions A → B by BA. We often write elements 

https://mathrepo.mis.mpg.de/ChipsplittingModels/
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of BA as A-indexed collections of elements of B. The set of subsets of A is denoted by 
2A. The cardinality of A is #A.

Let (V,E) be a directed graph without loops.

Definition 1.4. Let V ′ ⊆ V be the subset of non-sinks.

(a) A chip configuration is a vector w = (wv)v∈V ∈ ZV such that #{v ∈ V | wv ̸= 0} <

∞.
(b) The initial configuration is the zero vector 0 ∈ ZV .
(c) A splitting move at p ∈ V maps a chip configuration w = (wv)v∈V to the chip 

configuration ˜︁w = ( ˜︁wv)v∈V defined by

˜︁wv :=

⎧⎪⎨⎪⎩
wv − 1 if v = p,
wv + 1 if (p, v) ∈ E, i.e., E contains an edge from p to v,
wv otherwise.

An unsplitting move at p maps ˜︁w back to w.
(d) A chipsplitting game f is a finite sequence of splitting and unsplitting moves. The 

outcome of f is the chip configuration obtained from the initial configuration after 
executing all the moves in f .

(e) A (chipsplitting) outcome is the outcome of any chipsplitting game.

Note that the moves in our game are all reversible and commute with each other. 
In particular, the order of the moves in a game does not matter. Furthermore, every 
chipsplitting outcome can be obtained as the outcome of a chipsplitting game such that 
there is no vertex in V where both a splitting and an unsplitting move occur. We call 
games that have this property irredundant. We usually assume chipsplitting games are 
irredundant. Moreover, we consider two games f , g equivalent (f ∼ g) if they are equal 
up to reordering. Given an irredundant chipsplitting game f , we count the number of 
moves in f at each non-sink vertex p of V , counting unsplitting moves negatively. We 
obtain the bijection

{irredundant chipsplitting games on (V,E)}/ ∼
→ {g : V ′ → Z | #{p ∈ V ′ | g(p) ̸= 0} < ∞}
f ↦→ (p ↦→ number of moves at p in f) .

Thus, we identify an irredundant chipsplitting game f with its corresponding function 
V ′ → Z. The outcome w = (wv)v∈V of f now satisfies

wv = −f(v) +
∑︂
p∈V ′

(p,v)∈E

f(v),
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where we write f(v) = 0 when v ̸∈ V ′.

Remark 1.5. Let A be an abelian group. The definitions above naturally extend from Z to 
A, i.e., to the setting where the number of chips at a vertex and number of times a move 
is repeated are both allowed to be any element of A. Here (resp. when A = Q,R), we 
say that the chip configurations, chipsplitting games and outcomes are A-valued (resp. 
rational, real).

We now define the directed graphs (Vd, Ed) we consider in this paper. For d ∈ N ∪{∞}, 
write

Vd := {(i, j) ∈ Z2
≥0 | i + j ≤ d},

Ed := {(v, v + e) | v ∈ Vd−1, e ∈ {(1, 0), (0, 1)}}.

We think of Vd as the integer points of the plane triangle delimited by (0, 0), (d, 0), 
and (0, d). We consider the hypothenuse as the dth diagonal of this figure, and similarly 
we think of the vertex (i, j) as lying in the (i + j)-th diagonal. To emphasize this we 
define deg(i, j) := i + j, the degree of (i, j) ∈ Z2

≥0. Next, we define some notions about 
chip configurations on Vd that will be used throughout the paper.

Definition 1.6. Let w = (wi,j)(i,j)∈Vd
be a chip configuration.

(a) The positive support of w is supp+(w) := {(i, j) ∈ Vd | wi,j > 0}.
(b) The negative support of w is supp−(w) := {(i, j) ∈ Vd | wi,j < 0}.
(c) The support of w is supp(w) := {(i, j) ∈ Vd | wi,j ̸= 0} = supp+(w) ∪ supp−(w).
(d) The degree of w is deg(w) := max{deg(i, j) | (i, j) ∈ supp(w)}.
(e) We say that w is valid when supp−(w) ⊆ {(0, 0)}.
(f) We say that w is weakly valid when for all (i, j) ∈ supp−(w) one of the following 

holds:

(i) 0 ≤ i, j ≤ 3,
(ii) 0 ≤ i ≤ 3 and deg(i, j) ≥ d− 3, or
(iii) 0 ≤ j ≤ 3 and deg(i, j) ≥ d− 3.

Fig. 1 illustrates the notion of a weakly valid outcome, which will first be used in 
Section 6.5.

Example 1.7. We depict a chip configuration w = (wi,j)(i,j)∈Vd
∈ ZVd as a triangle of 

numbers with wi,j being the number in the ith column from the left and jth row from 
the bottom.
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Fig. 1. The corners of the four-entries wide outer ring of the triangle Vd. A chip configuration is weakly valid 
if its negative support is contained in the highlighted area.

When wi,j = 0, we usually write . at position (i, j) instead of 0. In the examples above, 
we have d = 3. The leftmost configuration is the initial configuration. From left to right, 
we obtain the next five configurations by successively executing splitting moves at (0, 0), 
(1, 0), (0, 1), (0, 2), and (2, 0), respectively. Finally, we obtain the rightmost configuration 
w by applying an unsplitting move at (1, 1). The positive support of w is {(0,3), (1,1), 
(3,0)}. Its negative support is {(0,0)}. Its support is the union of the previous two sets. 
The degree of w is 3, since the furthermost diagonal that supports w is the third one. 
All configurations shown in this example are valid and therefore weakly valid.

The notion of a valid outcome is essential for establishing the connection between 
chipsplitting games and rational one-dimensional models: Proposition 4.2 shows that 
valid real chipsplitting outcomes correspond precisely to reduced R1d models. For in-
stance, the model ℳ⊥ ⊥ from Section 1 corresponds to the middle configuration in the 
above sequence.

Remark 1.8. The notion of chipsplitting games is inspired by that of chipfiring games. 
For a thorough treatment of the latter, see [11]. In fact, by using powers of two one can 
prove that our chipsplitting games are equivalent to certain chipfiring games, provided 
the latter allow ‘unfiring’, or reversing a firing move. All notions of Definition 1.4 have 
chipfiring equivalents. In this paper, we use chipsplitting games as they relate more 
directly to the statistical models of Section 2.

We can now state our main result in the language of valid outcomes.

Theorem 1.9. Let n ≤ 4 and let w be a valid outcome with a positive support of size n+1. 
Then
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deg(w) ≤ 2n− 1.

The equivalence of Theorems 1.2 and 1.9 will be proven in Proposition 4.4. We will 
prove Theorem 1.9 in Sections 5–7 (See Theorems 5.14, 6.21 and 7.9).

2. Fundamental models

In this section we develop the statistical side of our paper and prove our main classi-
fication theorem using Theorem 1.2.

A one-dimensional (parametric, discrete) algebraic statistical model is a subset of Δn

which is the image of a rational map p : I → Δn whose components p0(t), . . . , pn(t) are 
rational functions in t, where I ⊆ R is a union of closed intervals such that p(∂I) ⊆
∂Δn. Alternatively, such a model can be described as the intersection of Δn with a 
parametrized curve {γ(t) | t ∈ R} ⊆ Rn+1 with rational entries in the t.

Let ℳ ⊆ Δn be a one-dimensional algebraic model which is parametrized by the 
rational functions p0(t), . . . , pn(t). The equation 

∑︁
ν pν(t) = 1 holds for infinitely many 

and thus for all t ∈ R. We multiply it by the least common denominator of the pν(t)
to obtain an equation of the form 

∑︁
ν aν(t) = b(t), where a0(t), . . . , an(t), b(t) are poly-

nomials in t. Thus, ℳ is determined by a collection (a0, . . . , an, b) of polynomials in 
t satisfying 

∑︁
ν aν = b. The parametrization of ℳ is recovered by setting pν = aν/b, 

where we may assume that the polynomials a0, . . . , an, b share no factor common to all 
of them.

In maximum likelihood estimation, one seeks to maximize the likelihood ℒu(p) =
const(u)

∏︁
ν p

uν
ν of observing a given empirical distribution u ∈ Δn, over all p ∈ ℳ. The 

term const(u) is a multinomial coefficient that depends only on u, so it can be dropped. 
Then, the problem is reduced to maximizing the log-likelihood ℓu(p) :=

∑︁
ν uν log(pν) ∝

logℒu(p). This can be accomplished by first finding all the critical points of ℓu. When 
ℳ is one-dimensional, finding these critical points amounts to finding the zeros of the 
derivative ℓu(p(t))′ with respect to t. In our notation, we have

ℓu(p(t))′ =
∑︂
ν

uν
a′ν
aν

−
∑︂
ν

uν
b′

b 
,

a rational expression in t which we abbreviate as ℓ′u. In algebraic statistics, the maximum 
likelihood degree mld(ℳ) of ℳ is the number of solutions over C to this equation for 
general u ∈ Cn. In our case, this number can be determined in terms of the roots of the 
aν and b, as the next lemma shows.

Lemma 2.1. Let f be the product of all the distinct complex linear factors occurring 
among the polynomials a0, . . . , an, b. Then mld(ℳ) = deg(f) − 1.

Proof. Every factor of a polynomial g with multiplicity k occurs in g′ with multiplicity 
k − 1. So the expression
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fℓ′u =
∑︂
ν

uν
fa′ν
aν

−
∑︂
ν

uν
fb′

b 

is a polynomial in t of degree deg(f)−1. All roots of the rational function ℓ′u are roots of 
fℓ′u. It remains to show that no new roots were introduced. That is, that no root of f is 
also a root of fℓ′u. Thus, let ζ be a complex linear factor of f and ζ0 ∈ C its derivative. 
Rewrite fℓ′u as

n+1∑︂
ν=0 

uν
fa′ν
aν

with an+1 := b and un+1 := −∑︁n
ν=0 uν . For ν = 0, . . . , n + 1, write aν = ζkν rν and 

f = ζr such that ζ ∤ rν , r. Then for all ν we have fa′ν/aν = ζrkνζ0/ζ + ζrr′ν/rν ≡ ζ0kνr

(mod ζ). Consequently,

fℓ′u ≡ ζ0r
n+1∑︂
ν=0 

uνkν ≡ ζ0r
n ∑︂

ν=0
uν(kν − kn+1) (mod ζ).

Not all the (kν − kn+1) for ν = 0, . . . , n can be zero since ζ is a factor of some aν for 
ν = 0, . . . , n + 1, but not all of them since by assumption the a0, . . . , an+1 share no 
factor common to all of them. Hence, because the uν are generic we may assume that ∑︁

ν uν(kν −kn+1) ̸= 0. Since ζ divides f only once, we have ζ0r ̸≡ 0 (mod ζ). Therefore, 
fℓ′u ̸≡ 0 (mod ζ), so ζ ∤ fℓ′u. □

In this paper we are interested in classifying one-dimensional models of ML degree 
one. The next proposition is the first step in our classification.

Proposition 2.2. Every one-dimensional discrete model ℳ of ML degree one has a 
parametrization of the form

p : [0, 1] → Δn, t ↦→ (wνt
iν (1 − t)jν )nν=0

for some nonnegative exponents iν , jν and positive real coefficients wν for ν = 0, . . . , n.

Proof. Let ℳ be defined by the polynomials a0, . . . , an, b with 
∑︁

ν aν = b. By 
Lemma 2.1, these polynomials split as products of the same two complex factors. The 
n + 1 faces of Δn lie on the n + 1 coordinate hyperplanes of Rn. Thus, the set I in 
the parametrization p : I → ℳ is a single closed interval because p(∂I) ⊆ ∂Δn and the 
aν , b have exactly two zeros among them. In particular, these zeros are real and coincide 
with the endpoints of I. Without changing ℳ, we may reparametrize and assume that 
I = [0, 1]. We may write
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aν(t) = wνt
iν (1 − t)jν

b(t) = wti(1 − t)j ,

for wν , w ∈ R>0 and iν , jν , i, j ∈ Z≥0 for all ν. If i > 0, then iν = 0 for some ν and 
we arrive at a contradiction by evaluating the equation 

∑︁
ν aν = b at t = 0. So i = 0. 

Similarly, we must have j = 0. By dividing by w we now arrive at the required form 
for p. □

Thus, our goal is to provide a classification of the parametrizations of models specified 
by Proposition 2.2, i.e. rational one-dimensional models. We will show how these models 
can be built up from progressively simpler models, the simplest of which we will call 
‘fundamental models’.

Proposition 2.2 shows that every rational one-dimensional model ℳ ⊆ Δn can be 
represented by a finite sequence (wν , iν , jν)nν=0 for some nonnegative exponents iν , jν
and positive real coefficients wν . The degree of ℳ as an algebraic variety, denoted by 
deg(ℳ), is max{deg(iν , jν) | ν ∈ {0, . . . , n}} where deg(i, j) := i + j.

We consider two rational one-dimensional models in Δn equivalent if they differ only 
by a relabeling of the coordinates on Δn. Nevertheless, we shall attempt to maintain 
some consistency when indicating points of Δn indexed by pairs (i, j) by ordering the 
coordinates of these points lexicographically. Although (wν , iν , jν)nν=0 and (wν , jν , iν)nν=0
represent the same subset of Δn, we shall count these two representations as distinct 
rational one-dimensional models unless they are equal up to reordering. These two models 
differ by the reparametrization t ↦→ p(t− 1).

We now define our first simpler subclass of the class of rational one-dimensional mod-
els.

Definition 2.3. A rational one-dimensional model represented by (wν, iν , jν)nν=0 is reduced 
if the exponent pairs (iν , jν) are not equal to (0, 0) and pairwise distinct. For brevity we 
call such a model a reduced R1d model.

Proposition 2.4. Every one-dimensional discrete model of ML degree one is the image of 
a reduced R1d model under a chain of linear embeddings of the form

Δn−1 → Δn, (p0, . . . , p̂ν , . . . , pn) ↦→ (λp0, . . . , 1 − λ, . . . , λpn), λ ∈ [0, 1] (1)

or

Δn−1 → Δn, (p0, . . . , pν , . . . , p̂μ, . . . , pn)

↦→ (p0, . . . , λpν , . . . , (1 − λ)pν , . . . , pn) , λ ∈ [0, 1]. (2)

Proof. Let (wν , iν , jν)nν=0 represent a rational one-dimensional model ℳ. If (iν , jν) =
(0, 0) for some ν then wν < 1. Let λ := 1 − wν . Then ℳ is the image under the linear 
embedding (1) of the reduced R1d model represented by



A. Bik, O. Marigliano / Advances in Applied Mathematics 170 (2025) 102928 11

(wι/(1 − wν), iι, jι)nι=0,ι̸=ν .

Similarly, suppose that (iν , jν) = (iμ, jμ) for some ν ̸= μ and let λ := wν/(wν+wμ). Then 
ℳ is the image under the linear embedding (2) of the reduced R1d model represented 
by

(wι + δινwμ, iι, jι)nι=0,ι̸=μ. □
Remark 2.5. If Δn contains a rational one-dimensional model of degree d, then Δn′

must contain a reduced R1d model of degree d for some n′ ≤ n. Therefore, to prove 
Theorem 1.2 it is enough to consider reduced R1d models only.

Definition 2.6. A reduced R1d model represented by (wν , iν , jν)nν=0 is a fundamental 
model if, given the exponents (iν , jν), the weights (wν) are uniquely determined by the 
constraint 

∑︁
ν pν = 1.

Thus, for any given set of exponents (iν , jν), we can check whether there is a fun-
damental model with these exponents by solving a system of affine-linear equations in 
the weights wν . Similarly, the set of reduced R1d models with these fixed exponents is 
always an affine-linear half space of dimension at most n + 1.

Example 2.7. Consider the sequence of exponents ((2, 0), (1, 1), (0, 2)). The polynomial 
constraint w0t

2+w1t(1−t)+w2(1−t)2 = 1 leads to the affine-linear system w0−w1+w2 =
0, w1 −2w2 = 0, w2 −1 = 0. The unique solution (1, 2, 1) defines the fundamental model 
t ↦→ (t2, 2t(1 − t), (1 − t)2).

We shall now see that every reduced R1d model can be constructed from finitely 
many fundamental models in a finite number of steps. For this, we represent a reduced 
R1d model by the function f : Z2 → R≥0 that sends an exponent pair (iν , jν) to its 
associated coefficient wν . We call the set of exponent pairs (iν , jν) the support of ℳ. It 
equals supp(f).

Definition 2.8. Let ℳ1 and ℳ2 be reduced R1d models represented by the functions 
f1, f2 : Z2 → R≥0. Let 0 < μ < 1. The composite ℳ1 ∗μ ℳ2 of ℳ1 and ℳ2 is the 
reduced R1d model represented by

g : Z2 → R≥0, g(i, j) := μf1(i, j) + (1 − μ)f2(i, j).

Proposition 2.9. Every reduced R1d model is the composite of finitely many fundamental 
models.

Proof. Let ℳ be a reduced R1d model represented by (wν, iν , jν)nν=0. If n ≤ 1 then 
ℳ is fundamental. So, let n ≥ 2 and ℳ not fundamental. It suffices to show that 
ℳ is the composite of two reduced R1d models whose supports are proper subsets of 
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S. Since ℳ is not fundamental, there exist x0, . . . , xn ∈ R, not all zero, such that ∑︁n
ν=0 xνt

iν (1 − t)jν = 0. Since this equality holds for all t ∈ (0, 1), we have at least one 
positive and one negative xν . Let

λ := min{wν/|xν | | ν ∈ {0, . . . , n}, xν < 0}, uν := wν + λxν for ν ∈ {0, . . . , n},

and S1 := {(iν , jν) | ν ∈ {0, . . . , n}, uν ̸= 0}. Then we have λ > 0 and uν ≥ 0 for all 
ν ∈ {0, . . . , n}, the latter of which we verify by distinguishing between the cases xν ≥ 0
and xν < 0. For all ν we have uν = 0 if and only if xν < 0 and λ = w/|xν |. Thus S1 is a 
nonempty proper subset of S. Since 

∑︁n
ν=0 uνsν = 1, the coefficients uν for (iν , jν) ∈ S1

define a reduced R1d model ℳ1 with support S1. Let

μ := min{wν/uν | ν ∈ {0, . . . , n}, uν ̸= 0},
vν := (wν − μuν)/(1 − μ) for ν ∈ {0, . . . , n},

and S2 := {(iν , jν) | ν ∈ {0, . . . , n}, vν ̸= 0}. Then μ > 0. Since at least one of the 
xν is positive, we have uν > wν for some ν, and thus μ < 1. We have vν ≥ 0 by the 
definition of μ and vν = 0 if and only if uν ̸= 0 and μ = wν/uν . Thus S2 is a nonempty 
proper subset of S and we have S1∪S2 = S. Since 

∑︁n
ν=0 vνxν = 1, the coefficients vν for 

(iν , jν) ∈ S2 define a reduced R1d model ℳ2 with support S2. We conclude by noting 
that wν = μuν + (1 − μ)vν for all ν ∈ {0, . . . , n}. Thus, ℳ = ℳ1 ∗μ ℳ2. □
Remark 2.10. If a reduced R1d model ℳ ⊆ Δn is not fundamental, then by Propo-
sition 2.9 there exists n′ < n and a fundamental model in Δn′ of the same degree as 
ℳ. Thus, it suffices to prove Theorem 1.2 for fundamental ℳ. In turn, Theorem 1.2
implies that there are only finitely many fundamental models in Δn for n ≤ 4. This is 
because for all d there are only finitely many subsets S ⊆ Z2 that can be the support of 
a fundamental model ℳ of degree d, and S determines ℳ uniquely.

Our classification of one-dimensional discrete models of ML degree one is now com-
plete. We summarize it in Theorem 2.11, all elements of which we already established in 
this section. Part (c) uses Theorem 1.2, which we will prove in Sections 5–7. We visualize 
our classification in Fig. 2.

Theorem 2.11. 

(a) Every one-dimensional discrete model of ML degree one ℳ ⊆ Δn is the image of a 
reduced R1d model ℳ′ ⊆ Δn′ under a linear embedding Δn′ → Δn for some n′ ≤ n.

(b) Every reduced R1d model ℳ′ ⊆ Δn′ can be written as the composite

ℳ′ = ℳ1 ∗μ1 (· · · ∗μm−1 (ℳm−1 ∗μm
ℳm) . . . )

of finitely many fundamental models ℳ1, . . . ,ℳm.
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Fig. 2. A classification of one-dimensional discrete models of ML degree one (right box). 

Fig. 3. Fundamental models in Δ2. These correspond to the parametrizations t ↦→ ((1 − t)3, 3t(1 − t), t3), 
t ↦→ ((1− t)2, 2(1− t)t, t2), and t ↦→ ((1− t), t(1− t), t2), from left to right. Their supports are {(0,3), (1,1), 
(3,0)}, {(0,2), (1,1), (2,0)}, and {(0,1), (1,1), (2,0)}, respectively. In Δ2 there is a further fundamental model 
with support {(0,2), (1,0), (1,1)}, but it is identical to the third model in this picture after a permutation 
of the coordinates of Δn and the reparametrization t ↦→ 1 − t.

Fig. 4. Non-reduced R1d models in Δ2. These arise from linear embeddings Δ1 → Δ2 of type (1) and (2), 
respectively. They are given by t ↦→ ((1−λ)t, λ, (1−λ)(1−t)) and t ↦→ ((1−t), λt, (1−λ)t), where λ := 1/3. 
All other non-reduced one-dimensional models of ML degree one in Δ2 arise from these two by varying λ
and permuting the coordinates of Δ2.

(c) For n ≤ 4, there are only finitely many fundamental models in Δn. □

Example 2.12. Let us classify all one-dimensional models ℳ of ML degree one in the 
triangle Δ2, up to coordinate permutations. The unique rational one-dimensional model 
ℳ0 in Δ1 is parametrized by t ↦→ (t, (1 − t)). Since ℳ0 ∗μ ℳ0 = ℳ0, all rational one-
dimensional models in Δ2 are either fundamental or non-reduced. Theorem 1.2 gives a 
bound for the algebraic degree of ℳ: we have deg(ℳ) ≤ 3. Hence, to find all fundamental 
models we check all possible sets of exponent pairs (or supports) S ⊆ {(i, j) | 0 < i+ j ≤
3} of size n + 1 = 3. We report the results in Fig. 3.

As for non-reduced R1d models, there are up to coordinate permutations only two 
linear embeddings Δ1 → Δ2 of the form (1) or (2) that can be used to construct ℳ
from ℳ0. These can vary with the parameter λ and are reported in Fig. 4 for λ = 1/3.
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3. Chipsplitting games

In this section we lay some groundwork for proving Theorem 1.9. In particular, sym-
metry structures will help us cut down the number of cases considered, while Pascal 
equations will help us distinguish chipsplitting outcomes from non-outcomes.

3.1. Symmetry

For every d ∈ N ∪{∞}, define an action of the group S2 = ⟨(12)⟩ on ZVd by setting

(12) · (wi,j)(i,j)∈Vd
:= (wj,i)(i,j)∈Vd

,

where clearly (12) · ((12) · w)) = w for all w ∈ ZVd . We also let S2 act on Vd by 
(12) · (i, j) := (j, i).

The initial configuration is fixed by S2. Let w ∈ ZVd , p ∈ Vd−1, and let ˜︁w be the 
result of applying an (un)splitting move at p to w. Then (12) · ˜︁w is the result of applying 
an (un)splitting move at (12) · p to (12) · w. So we see that if w is the outcome of an 
irredundant chipsplitting game f , then (12) ·w is the outcome of the chipsplitting game 
(i, j) ↦→ f(j, i). Hence the space of outcomes is closed under the action of S2. Let w ∈ ZVd

be a chip configuration. Then

supp+((12) · w) = (12) · supp+(w), supp−((12) · w) = (12) · supp−(w),

supp((12) · w) = (12) · supp(w), deg((12) · w) = deg(w).

Furthermore, w is (weakly) valid if and only if (12) · w is (weakly) valid.

Example 3.1. The following two valid outcomes are mapped to each other by the element 
(12).

The configuration corresponding to the model ℳ⊥ ⊥ from Section 1 is invariant under 
the S2-action.

3.2. Pascal equations

Another way to study the space of outcomes is via the set of linear forms that vanish 
on it. A linear form on ZVd is a function ZVd → Z of the form

(wi,j)(i,j)∈Vd
↦→

∑︂
(i,j)∈Vd

ci,jwi,j ,
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which we will denote by 
∑︁

(i,j)∈Vd
ci,jxi,j . The group S2 acts on the space of linear forms 

on ZVd via

(12) ·
∑︂

(i,j)∈Vd

ci,jxi,j :=
∑︂

(i,j)∈Vd

cj,ixi,j .

Definition 3.2. We say that a linear form 
∑︁

(i,j)∈Vd
ci,jxi,j is a Pascal equation when

ci,j = ci+1,j + ci,j+1

for all (i, j) ∈ Vd−1.

This terminology is inspired by the Pascal triangle, whose entries satisfy the same 
condition. The space of Pascal equations is closed under the action of S2.

Pascal equations will help us throughout the rest of this article to distinguish chip 
configurations which are outcomes from those which are not. In particular, these equa-
tions will play an essential role in formulating and proving the Invertibility Criterion 
(Proposition 5.2), Hyperfield Criterion (Proposition 6.6), and Hexagon Criterion (Propo-
sition 7.1).

Proposition 3.3. Let (a0, . . . , ad) be any vector of d + 1 integers.

(a) There exists a unique Pascal equation 
∑︁

(i,j)∈Vd
ci,jxi,j such that c0,j = aj for all 

0 ≤ j ≤ d.
(b) There exists a unique Pascal equation 

∑︁
(i,j)∈Vd

ci,jxi,j such that ci,0 = ai for all 
0 ≤ i ≤ d.

Proof. (a) Set c0,j := aj for all integers 0 ≤ j ≤ d and define

ci+1,j := ci,j − ci,j+1

for all (i, j) ∈ Vd via recursion on i > 0. Then 
∑︁

(i,j)∈Vd
ci,jxi,j is a Pascal equation such 

that c0,j = aj for all integers 0 ≤ j ≤ d. Clearly, it is the only Pascal equation with this 
property.

(b) Let di,j := cj,i, so that

(12) ·
∑︂

(i,j)∈Vd

ci,jxi,j =
∑︂

(i,j)∈Vd

di,jxi,j .

Then ck,0 = ak if and only if d0,k = ak and hence the statement follows from (a). □
Our next goal is to prove that a chip configuration is an outcome if and only if all 

Pascal equations vanish at it.
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Proposition 3.4. Let w ∈ ZVd be a chip configuration. Then the value at w of any given 
Pascal equation on ZVd is invariant under (un)splitting moves. In particular, all Pascal 
equations on ZVd vanish at all outcomes.

Proof. Let w = (wi,j)(i,j)∈Vd
be a chip configuration and suppose we obtain ˜︁w =

( ˜︁wi,j)(i,j)∈Vd
from w by applying a chipsplitting move at (i′, j′) ∈ Vd−1. Let ∑︁

(i,j)∈Vd
ci,jxi,j be a Pascal equation. Then we see that

∑︂
(i,j)∈Vd

ci,j ˜︁wi,j =
∑︂

(i,j)∈Vd

ci,j

⎧⎪⎪⎪⎨⎪⎪⎪⎩
wi,j − 1 if (i, j) = (i′, j′),
wi,j + 1 if (i, j) = (i′ + 1, j),
wi,j + 1 if (i, j) = (i′, j′ + 1),
wi,j otherwise

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =
∑︂

(i,j)∈Vd

ci,jwi,j

since ci′+1,j′ + ci′,j′+1 − ci′,j′ = 0, which proves the first claim. For the second claim it 
suffices to note that all Pascal equations vanish at the initial configuration. □

Let w = (wi,j)(i,j)∈Vd
be a degree-e chip configuration. Then there exists a unique 

irredundant chipsplitting game that uses only moves at (i, j) ∈ Vd−1 with deg(i, j) = e−1
and that sets the values w0,e, w1,e−1, . . . , we−1,1 to 0. Note that these moves do not alter 
the alternating sum 

∑︁e
k=0(−1)kwk,e−k. So, if 

∑︁e
k=0(−1)kwk,e−k = 0, this chipsplitting 

game also sets we,0 to 0. This motivates the following definition.

Definition 3.5. Let w = (wi,j)(i,j)∈Vd
be a degree-e chip configuration such that

e ∑︂
k=0

(−1)kwk,e−k = 0.

The retraction of w is the unique chip configuration obtained from w using moves at 
vertices (i, j) ∈ Vd−1 with deg(i, j) = e− 1 such that deg(w) < e.

Example 3.6. In the following picture, the rightmost chip configuration is the retraction 
of the leftmost one. The retraction is obtained by a sequence of three chipsplitting moves 
on the second (deg(i, j) = 2) diagonal of the grid: one unsplitting move followed by two 
splitting moves. This works because in the leftmost configuration, the alternating sum 
of the entries in the outermost diagonal (deg(i, j) = 3) is zero, therefore it is possible to 
set that diagonal to zero via chipsplitting moves.

Proposition 3.7. Let w = (wi,j)(i,j)∈Vd
be a degree-e chip configuration. Then w is an 

outcome if and only if 
∑︁e

k=0(−1)kwk,e−k = 0 and the retraction of w is an outcome.
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Proof. If 
∑︁e

k=0(−1)kwk,e−k = 0, then w and its retraction are obtained from each other 
using finite sequences of moves. So it suffices to prove that 

∑︁e
k=0(−1)kwk,e−k = 0 holds 

when w is an outcome. Assume that w is the outcome of an irredundant chipsplitting 
game f . Then e − 1 is the maximal degree of a vertex in Vd−1 at which a move in f
occurred. As moves at (i, j) preserve the value of 

∑︁e
k=0(−1)kwk,e−k for all (i, j) ∈ Vd−1

with deg(i, j) ≤ e− 1, we see that 
∑︁e

k=0(−1)kwk,e−k = 0. □
Proposition 3.8. Let w ∈ ZVd be a chip configuration and suppose that all Pascal equa-
tions on ZVd vanish at w. Then w is an outcome.

Proof. By Proposition 3.3, for every integer 0 ≤ e ≤ d there exists a Pascal equation

φ(e) :=
∑︂

(i,j)∈Vd

c
(e)
i,j xi,j

with c(e)0,j = 0 for j < e and c(e)0,e = 1. Note that c(e)i,j = 0 for all (i, j) ∈ Vd with deg(i, j) < e

and c(e)k,e−k = (−1)k for k ∈ {0, . . . , e}. Next, note that for e = deg(w) we have

e ∑︂
k=0

(−1)kwi,j = φ(e)(w) = 0

and hence w has a retraction w′, at which all Pascal equations also vanish. Repeating the 
same argument, we see that w′ also has a retraction w′′, at which all Pascal equations 
again vanish. After repeating this e+1 times, we arrive at a chip configuration of degree 
< 0, which must be the initial configuration. Hence by Proposition 3.7, we see that w is 
an outcome. □
Example 3.9. Let w⊥ ⊥ be the chip configuration associated to the model ℳ⊥ ⊥ from Sec-
tion 1. A general Pascal equation evaluated at w⊥ ⊥ gives

c20 + 2c11 + c02 − c00 = c10 + c01 − c00 = 0,

therefore w⊥ ⊥ is an outcome. The first equality above corresponds to passing to the 
retraction of w⊥ ⊥.

A chip configuration w ∈ ZVd is an outcome if and only if all Pascal equations vanish 
at w. In particular using a larger or smaller Vd′ for the same w, provided d′ ≥ deg(w), 
does not change the fact that w is a chipsplitting outcome. Later in this section we see 
however that fixing a finite d is useful as it provides an additional basis to the space of 
Pascal equations.

Definition 3.10. Let 0 ≤ k ≤ d be an integer.
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(a) We write ψk for the unique Pascal equation 
∑︁

(i,j)∈Vd
ci,jxi,j such that c0,j = δjk

(b) We write ψk := (12) · ψk.

Proposition 3.11. 

(a) We have

ψk = (−1)k
∑︂

(i,j)∈Vd

(−1)j
(︃

i 
k − j

)︃
xi,j and

ψk = (−1)k
∑︂

(i,j)∈Vd

(−1)i
(︃

j

k − i

)︃
xi,j

for all integers 0 ≤ k ≤ d.
(b) Every Pascal equation can be written uniquely as

d ∑︂
k=0

akψk (ak ∈ Z) as well as
d ∑︂

k=0

bkψk (bk ∈ Z).

When d < ∞, the ψk and ψk form two bases of the space of Pascal equations.

Proof. (a) We have (−1)k+j
(︁ 0 
k−j

)︁
= δjk and so it suffices to prove that

∑︂
(i,j)∈Vd

(−1)j
(︃

i 
k − j

)︃
xi,j

is in fact a Pascal equation. Indeed, we have

(−1)j
(︃

i 
k − j

)︃
= (−1)j

(︃
i + 1 
k − j

)︃
+ (−1)j+1

(︃
i 

k − (j + 1)

)︃

for all (i, j) ∈ Vd as 
(︁
a+1
b+1 

)︁
=

(︁
a 

b+1
)︁

+
(︁
a
b 
)︁

for all integers a, b.
(b) Write

∑︂
(i,j)∈Vd

ci,jxi,j =
d ∑︂

k=0

akψk =
d ∑︂

k=0

bkψk.

Then we see that

ci,j =
deg(i,j)∑︂
k=j 

ak(−1)k+j

(︃
i 

k − j

)︃
=

deg(i,j)∑︂
k=i 

bk(−1)k+i

(︃
j

k − i

)︃
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for all (i, j) ∈ Vd. We see that each ci,j is a finite sum. We also see that c0,j = aj and 
ci,0 = bi for all i, j ∈ N≤d. So now the statement follows from Proposition 3.3. □
Example 3.12. For d = 7 and k = 3, the Pascal equation ψk can be visualised by writing 
the coefficients ci,j on the grid Vd as follows:

We note that the resulting picture is a rotated Pascal’s triangle with minus signs on even 
rows.

3.3. Additional structure for d < ∞

In this subsection, we consider a Vd with d < ∞. Since chipsplitting outcomes are 
characterized by vanishing at all Pascal equations (Propositions 3.4 and 3.8), it will 
be useful to have multiple parametrizations of the space of all Pascal equations. By 
Proposition 3.11, we know that the ψk and ψk form two bases of the space of Pascal 
equations on ZVd . When d < ∞, we also have another natural basis which will be of 
further help in Sections 5–7.

To introduce the new basis, we first prove that Pascal equations are characterized by 
their coefficients on the d-th diagonal.

Proposition 3.13. For every vector (a0, . . . , ad) ∈ Zd+1, there exists a unique Pascal 
equation

∑︂
(i,j)∈Vd

ci,jxi,j

such that ck,d−k = ak for all integers 0 ≤ k ≤ d.

Proof. Let (a0, . . . , ad) ∈ Zd+1, set ck,d−k := ak for k ∈ {0, . . . , d} and, for e = d −
1, . . . , 0, set ck,e−k = ck+1,e−k + ck,e−k+1 for k ∈ {0, . . . , e} recursively. Then

∑︂
(i,j)∈Vd

ci,jxi,j

is a Pascal equation such that ck,d−k = ak for all integers 0 ≤ k ≤ d. Clearly, this Pascal 
equation is unique with this property. □
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Definition 3.14. Let (a, b) ∈ Vd with deg(a, b) = d. We write ϕa,b for the unique Pascal 
equation 

∑︁
(i,j)∈Vd

ci,jxi,j such that ci,j = δia (or equivalently ci,j = δjb) for all (i, j) ∈ Vd

with deg(i, j) = d.

Proposition 3.15. 

(a) We have

ϕa,b =
∑︂

(i,j)∈Vd

(︃
d− (i + j)

a− i 

)︃
xi,j =

∑︂
(i,j)∈Vd

(︃
d− (i + j)

b− j 

)︃
xi,j

for all (a, b) ∈ Vd with deg(a, b) = d.
(b) The ϕa,b form a basis for the space of all Pascal equations.

Proof. (a) We have

δia =
(︃
d− (i + j)

a− i 

)︃
=

(︃
d− (i + j)

b− j 

)︃
= δjb

for all (i, j) ∈ Vd with deg(i, j) = d. So it suffices to show that

∑︂
(i,j)∈Vd

(︃
d− (i + j)

a− i 

)︃
xi,j

is a Pascal equation. Indeed, we have

(︃
d− (i + j)

a− i 

)︃
=

(︃
d− (i + 1 + j)
a− (i + 1) 

)︃
+

(︃
d− (i + j + 1)

a− i 

)︃

for all (i, j) ∈ Vd−1 as 
(︁
a+1
b+1 

)︁
=

(︁
a 

b+1
)︁

+
(︁
a
b 
)︁

for all integers a, b.
(b) Every Pascal equation can be uniquely written as

∑︂
(i,j)∈Vd

ci,jxi,j =
∑︂

(a,b)∈Vd\Vd−1

ca,bϕa,b.

So we see that the ϕa,b form a basis for the space of all Pascal equations. □
Example 3.16. For d = 7 and (a, b) = (3, 4), the Pascal equation ϕa,b can be visualised 
by writing the coefficients ci,j on the grid Vd as follows:
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We note that the coefficients form a Pascal triangle.

Next, we define an action of S3 on Vd. For (i, j) ∈ Vd we set

(12) · (i, j) := (j, i), (132) · (i, j) := (d− deg(i, j), i),

(13) · (i, j) := (d− deg(i, j), j), (123) · (i, j) := (j, d− deg(i, j)),

(23) · (i, j) := (i, d− deg(i, j)).

We use this action to define an action of S3 on ZVd by setting

(12) · (wi,j)(i,j)∈Vd
:= (wj,i)(i,j)∈Vd

(123) · (wi,j)(i,j)∈Vd
:= ((−1)d−jwj,d−deg(i,j))(i,j)∈Vd

for all w = (wi,j)(i,j)∈Vd
∈ ZVd . It is a routine computation to verify that this determines 

a well-defined action of S3. Under this action, we have

(13) · (wi,j)(i,j)∈Vd
= ((−1)d−jwd−deg(i,j),j)(i,j)∈Vd

(23) · (wi,j)(i,j)∈Vd
= ((−1)d−iwi,d−deg(i,j))(i,j)∈Vd

,

(132) · (wi,j)(i,j)∈Vd
= ((−1)d−iwd−deg(i,j),i)(i,j)∈Vd

.

We have σ · supp(w) = supp(σ · w) for all w ∈ ZVd and σ ∈ S3.
The way (12), (13) and (23) act on ZVd is vizualized below. The permutation (12)

switches the order of all entries of the same degree. The permutation (13) switches the 
order of all entries of the same row and changes the signs of alternating rows. The 
permutation (23) acts similarly on columns.

Proposition 3.17. The space of outcomes is closed under the action of S3.
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Proof. Let w = (wi,j)(i,j)∈Vd
be an outcome. We already know that (12) · w is again an 

outcome. So it suffices to prove that (123) · w is an outcome as well. This is indeed the 
case since

ψk((123) · w) = (−1)k
∑︂

(i,j)∈Vd

(−1)j
(︃

i 
k − j

)︃
(−1)d−jwj,d−deg(i,j)

= (−1)d−k
∑︂

(i′,j′)∈Vd

(︃
d− (i′ + j′)

k − i′

)︃
wi′,j′

= (−1)d−kϕk,d−k(w) = 0

for all integers 0 ≤ k ≤ d. □
Example 3.18 (Example   1.1 continued). Let w⊥ ⊥ be the chip configuration associated to 
ℳ⊥ ⊥ as in Example 1.3. The orbit of (123) ∈ S3 acting on supp(w⊥ ⊥) is the following 
sequence of supports.

3.4. Valid outcomes

In this paper, we are mostly interested in valid outcomes, since they correspond to 
reduced R1d models as explained in Section 4.

Lemma 3.19. Let w = (wi,j)(i,j)∈Vd
∈ ZVd be an outcome and suppose that supp−(w) = ∅. 

Then w is the initial configuration.

Proof. We may assume that d < ∞. We have wi,j ≥ 0 for all (i, j) ∈ Vd. For every 
(a, b) ∈ Vd of degree d, the equation ϕa,b(w) = 0 shows that wi,j = 0 for all i ∈ {0, . . . , a}
and j ∈ {0, . . . , b}. Combined, this shows that wi,j = 0 for all (i, j) ∈ Vd. □

In particular, a valid outcome w with w0,0 = 0 is the initial configuration.

Proposition 3.20. Let w = (wi,j)(i,j)∈Vd
∈ ZVd be an outcome and suppose that 

# supp−(w) = 1. Write c0 = min{i | (i, j) ∈ Vd | wi,j ̸= 0}, r0 = min{j | (i, j) ∈
Vd | wi,j ̸= 0} and d′ = d− c0 − r0. Then

(wc0+i,r0+j)(i,j)∈Vd′ ∈ ZVd′

is a valid outcome. In particular, if c0 = r0 = 0, then w is a valid outcome.

Proof. We may assume that d < ∞. First we suppose that c0 = r0 = 0. Then the 
equations ϕ0,d(w) = 0 and ϕd,0(w) = 0 show that w0,j < 0 and wi,0 < 0 for some i, j ∈
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{0, . . . , d}. Since # supp−(w) = 1, it follows that i = j = 0 and supp−(w) = {(0, 0)}. 
Hence w is indeed valid.

In general, we note that ϕc0+a,r0+b vanishes on w for all (a, b) ∈ Vd′ \ Vd′−1. 
So ϕa,b vanishes on (wc0+i,r0+j)(i,j)∈Vd′ for all (a, b) ∈ Vd′ \ Vd′−1. This means that 
(wc0+i,r0+j)(i,j)∈Vd′ is an outcome to which we can apply the previous case. □
4. From reduced R1d models to valid outcomes and back

In this section, we continue to use the notion of a chipsplitting game and related 
concepts (Definitions 1.4 and 1.6). We augment this notion by allowing chip configura-
tions to have rational or real entries (see Remark 1.5). We start by establishing a further 
characterization of the space of outcomes.

Lemma 4.1. The space of integral (resp. rational, real) outcomes equals the kernel of the 
linear map

αd : RVd → R[t]≤d

(wi,j)(i,j)∈Vd
↦→

∑︂
(i,j)∈Vd

wi,jt
i(1 − t)j

where R = Z (resp. R = Q,R).

Proof. The map α∞ is the direct limit of the maps αe for e < ∞. So we may assume 
that d < ∞. In this case, we know that the space of outcomes has codimenion d + 1
by Proposition 3.11(b). For a given polynomial p =

∑︁d
j=0 cjtj ∈ R[t]≤d, set wi,j = ci

when j = 0 and wi,j = 0 otherwise. Then αd(wi,j)(i,j)∈Vd
= p. So we see that αd is 

surjective. Hence the kernel of αd has the same codimension as the space of outcomes. 
It now suffices to show that every outcome is contained in the kernel of αd. Note that 
the initial configuration is contained in the kernel of αd. And, for w ∈ RVd , the value of 
αd(w) does not change when we execute a chipsplitting move at (i, j) ∈ Vd−1. Indeed, 
we have

−ti(1 − t)j + ti+1(1 − t)j + ti(1 − t)j+1 = ti(1 − t)j(−1 + t + (1 − t)) = 0

and so every outcome is contained in the kernel of αd. □
Let ℳ = (wν , iν , jν)nν=0 be a reduced R1d model. Then ℳ induces a real chip con-

figuration w(ℳ) = (wi,j)(i,j)∈V∞ by setting

wi,j :=

⎧⎪⎨⎪⎩
−1 if (i, j) = (0, 0),
wν if (i, j) = (iν , jν) for some ν ∈ {0, . . . , n},
0 otherwise
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We have the following result.

Proposition 4.2. 

(a) The map ℳ ↦→ w(ℳ) is a bijection between the set of reduced R1d models and the 
set of valid real outcomes w ∈ RV∞ with w0,0 = −1.

(b) Let S be the support of ℳ. Then supp+(w(ℳ)) = S.
(c) The map ℳ ↦→ w(ℳ) is degree-preserving.
(d) The chip configuration w(ℳ) is rational if and only if the coefficients of ℳ are all 

rational.
(e) Every valid rational outcome w ∈ QV∞ is of the form λŵ for some λ ∈ Q>0 and 

valid integral outcome ŵ ∈ ZV∞ .
(f) Let w ∈ RV∞ be a valid real outcome with w0,0 = 0. Then w = 0.

Proof. (a) From Lemma 4.1, it follows that w(ℳ) is indeed a valid real outcome with 
value −1 at (0, 0). Clearly, the map ℳ ↦→ w(ℳ) is injective. Let w ∈ RV∞ be a valid 
real outcome with w0,0 = −1 and write supp+(w) = {(i0, j0), . . . , (in, jn)} and take 
wν := wiν ,jν for ν = 0, . . . , n. Then (wν , iν , jν)nν=0 is a reduced R1d model by Lemma 4.1. 
Hence the map ℳ ↦→ w(ℳ) is also surjective.

(b)–(d) hold by definition.
(e) For every valid rational outcome w ∈ QV∞ there exist an n ∈ N such that 

nwi,j ∈ Z for all (i, j) in the finite set supp(w). Take ŵ := nw and λ := 1/n ∈ Q>0. 
Then ŵ ∈ ZV∞ is an valid integral outcome using Lemma 4.1 and w = λŵ.

(f) Since w is an outcome with supp−(w) = ∅, we know by Lemma 4.1 that ∑︁
(i,j) wi,jt

i(1 − t)j = 0 for (i, j) ranging over supp+(w) and, by evaluating at t = 1/2, 
we see that supp+(w) can only be the empty set. Hence w = 0. □
Example 4.3 (Example   1.1 continued). One can verify that w(ℳ⊥ ⊥) = w⊥ ⊥.

Proposition 4.4. Theorems 1.2 and 1.9 are equivalent.

Proof. By Remark 2.10, we know that for Theorem 1.2 it suffices to only consider fun-
damental models. Since the constraint 

∑︁
ν pν = 1 of Definition 2.6 has coefficients in the 

rational numbers, the coefficients of a fundamental model are rational. Hence it suffices 
to only consider rational coefficients.

By Proposition 4.2 (e), every valid rational outcome is a positive multiple of a valid 
integral outcome. The space of outcomes is closed under scaling, and scaling does not 
change the degree or size of the positive support of a chip configuration. Hence for 
Theorem 1.9 it suffices to consider all valid rational outcomes w with w0,0 = −1.

The required equivalence is now given by Proposition 4.2 (a)–(d). □
Next, we consider the chipsplitting equivalent of fundamental models.
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Definition 4.5. A valid outcome w ∈ ZVd \{0} is called fundamental if it cannot be 
written as

w = μ1w1 + μ2w2,

where μ1, μ2 ∈ Q>0 and w1, w2 ∈ ZVd are valid outcomes with supp+(w1), supp+(w2) ⊊
supp+(w).

Applying Proposition 2.9 and keeping track of rational coefficients, we conclude the 
following.

Proposition 4.6. 

(a) Let ℳ be a R1d model with rational coefficients and let n ∈ N be any integer such 
that w = nw(ℳ) is an integral chip configuration. Then ℳ is a fundamental model 
if and only if w is a fundamental outcome.

(b) In particular, fundamental models correspond one-to-one with fundamental integral 
outcomes w with gcd{wi,j | (i, j) ∈ supp(w)} = 1. □

Example 4.7 (Example   1.1 continued). The valid outcome w⊥ ⊥ is fundamental because 
ℳ⊥ ⊥ is a fundamental model.

We close this section with a general observation about fundamental outcomes.

Proposition 4.8. Let w be a degree-d fundamental outcome with # supp+(w) = n + 1. 
Then n ≤ d.

Proof. Recall that if ℳ is a fundamental model with support S ⊆ Z2 \ {(0, 0)}, then 
ℳ is the only rational one-dimensional model with support S. In terms of outcomes, 
this means that there exists a valid outcome w′ with supp+(w′) ⊆ S and that the space 
of outcomes whose support is contained in S ∪ {(0, 0)} is spanned by w′. In particular, 
this space must be 1-dimensional. When n > d, the space of chip configurations w′

with supp(w′) ⊆ S ∪ {(0, 0)} has dimension > d + 1. The subspace of outcomes has 
codimension ≤ d + 1 and hence has dimension ≥ 2 in this case. So n ≤ d. □
5. Valid outcomes of positive support ≤ 3

From now on, we will always assume that d < ∞. Since every chip configuration has 
finite degree, this assumption is harmless. In this section, we prove Theorem 1.9 for valid 
outcomes whose positive support has size ≤ 3. To do this, we introduce our first tool, 
the Invertibility Criterion, which shows that certain subsets of Vd cannot contain the 
support of an outcome.
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5.1. The invertibility criterion

Let S ⊆ Vd and E ⊆ {0, . . . , d} be nonempty subsets of the same size ≤ d + 1. The 
Invertibility Criterion (Proposition 5.2) will help us detect, with the right choice of E, 
whether S can be the support, or contain the support, of some outcome.

Definition 5.1. We define

A
(d)
E,S :=

(︃(︃
d− deg(i, j)

a− i 

)︃)︃
a∈E,(i,j)∈S

to be the pairing matrix of (E,S).

Let w = (wi,j)(i,j)∈Vd
∈ ZVd be an outcome such that supp(w) ⊆ S.

Proposition 5.2 (Invertibility Criterion). If A(d)
E,S is invertible, then w is the initial con-

figuration.

Proof. Suppose that supp(w) ̸= ∅. Then

(wi,j)(i,j)∈S ̸= 0, A
(d)
E,S · (wi,j)(i,j)∈S = (ϕa,d−a(w))a∈E = 0

and hence A(d)
E,S is degenerate. □

Our goal is to construct, for many subsets S ⊆ Vd, a subset E such that A(d)
E,S is 

invertible. We do this by dividing the pairing matrix into small parts and dealing with 
these parts separately.

5.2. Dividing the pairing matrix into smaller parts

Let λ = (λ1, . . . , λℓ) ∈ Nℓ be a tuple of integers adding up to d + 1. Write ci =
λ1 + . . . + λi for i ∈ {0, . . . , ℓ}. For k ∈ {1, . . . , ℓ}, let Sk := {(i, j) ∈ S | ck−1 ≤ i < ck}. 
Assume that the condition

#Sk ∈ {0, λk}

is satisfied for every k ∈ {1, . . . , ℓ}. Lastly, set

Ek :=
{︄

{ck−1, ck−1 + 1, . . . , ck − 1} if #Sk = λk,
∅ if Sk = ∅,

where the top row indicates consecutive integers ranging from ck−1 to ck − 1.
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Remark 5.3. Not all subsets S will admit a tuple λ as above such that #Sk ∈ {0, λk}
for all k. For instance, let S be the set of positions marked with an * in the following 
picture.

Since d = 2, such a λ would have λ1 ∈ {1, 2, 3}. But if λ1 = 1 then #S1 = 2 ̸= λ1, 
and if λ1 ∈ {2, 3} then #S1 = 4 ̸= λ1. So this S does not admit a λ with this property. 
For other S, one can try to define such a λ recursively by, for k = 1, 2, . . ., picking λk

minimal such that #Sk ∈ {0, λk}. We stop when ck = d+1. This will work exactly when

#{(i, j) ∈ S | i ≥ d− k} ≤ k + 1

for all k ∈ {0, 1, . . . , d}.

Proposition 5.4. Take E = E1 ∪ · · · ∪Eℓ. Then #E = #S and we have

A
(d)
E,S =

⎛⎜⎜⎜⎜⎜⎝
A

(d)
E1,S1

0 · · · 0
...

. . . . . .
...

...
. . . 0

A
(d)
Eℓ,S1

· · · · · · A
(d)
Eℓ,Sℓ

⎞⎟⎟⎟⎟⎟⎠ .

In particular, the matrix A(d)
E,S in invertible if and only if all of A(d)

E1,S1
, . . . , A

(d)
Eℓ,Sℓ

are.

Proof. It is clear that #E = #S and

A
(d)
E,S =

⎛⎜⎜⎜⎜⎜⎝
A

(d)
E1,S1

· · · · · · A
(d)
E1,Sℓ

...
...

...
...

A
(d)
Eℓ,S1

· · · · · · A
(d)
Eℓ,Sℓ

⎞⎟⎟⎟⎟⎟⎠ .

We need to show that A(d)
Ek,Sk′ = 0 when k < k′. Indeed, when k < k′, a ∈ Ek and 

(i, j) ∈ Sk′ , then

(︃
d− deg(i, j)

a− i 

)︃
= 0

since a < ck ≤ ck′−1 ≤ i. So A(d)
Ek,Sk′ = 0 when k < k′. □

Example 5.5. Take d = 6 and let S be the set of positions marked with an * below.
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The construction from Remark 5.3 yields the tuple λ = (2, 1, 1, 1, 1, 1). We get

S1 = {(0, 0), (0, 4)}, E1 = {0, 1},
S2 = {(2, 0)}, E2 = {2},
S3 = ∅, E3 = ∅,
S4 = {(4, 1)}, E4 = {4},
S5 = {(5, 0)}, E5 = {5},
S6 = {(6, 0)}, E6 = {6}.

So λ indeed satisfies the assumption and we see that

A
(d)
E,S =

⎛⎜⎜⎜⎜⎜⎜⎝
A

(d)
E1,S1

0 0 0 0
∗ A

(d)
E2,S2

0 0 0
∗ ∗ A

(d)
E4,S4

0 0
∗ ∗ ∗ A

(d)
E5,S5

0
∗ ∗ ∗ ∗ A

(d)
E6,S6

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
1 1 0 0 0 0
6 2 0 0 0 0
∗ ∗ 1 0 0 0
∗ ∗ ∗ 1 0 0
∗ ∗ ∗ ∗ 1 0
∗ ∗ ∗ ∗ ∗ 1

⎞⎟⎟⎟⎟⎠
is invertible. Hence S does not contain the support of a nonzero outcome.

5.3. Analyzing the invertibility of the smaller pairing matrices

Using Proposition 5.4 to divide the pairing matrix A(d)
E,S into manageable blocks, we 

get subsets Sk ⊆ S that are progressively further away from the y-axis of the grid as k
grows. The next proposition says that we can shift these subsets back toward the origin.

Proposition 5.6. Let S ⊆ Vd and E ⊆ {0, . . . , d} and

x := min(E ∪ {i | (i, j) ∈ S}).

Let S′ = {(i− x, j) | (i, j) ∈ S} and E′ = {a− x | a ∈ E}. Then A(d)
E,S = A

(d−x)
E′,S′ .

Proof. This follows directly from the definition of the pairing matrix. □
We now consider pairs (S,E) where i < #S for all (i, j) ∈ S and E = {0, . . . ,#S−1}.

Proposition 5.7. Suppose that one of the following holds:

(a) We have S = {(0, i)} for some 0 ≤ i ≤ d and E = {0}.
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(b) We have S = {(0, i), (0, j)} for some 0 ≤ i < j ≤ d and E = {0, 1}.
(c) We have S = {(0, i), (0, j), (0, k)} for some 0 ≤ i < j < k ≤ d and E = {0, 1, 2}.
(d) We have S = {(0, i), (0, j), (1, k)} for some 0 ≤ i < j ≤ d and 0 ≤ k ≤ d − 1 such 

that i + j ̸= 2k + 1 and E = {0, 1, 2}.

Then A(d)
E,S is invertible.

Proof. We prove the proposition case by case.
(a) When S = {(0, i)} for some 0 ≤ i ≤ d and E = {0}, we see that A(d)

E,S = (1) is 
invertible.

(b) When S = {(0, i), (0, j)} for some 0 ≤ i < j ≤ d and E = {0, 1}, we see that

A
(d)
E,S =

(︃
1 1

d− i d− j

)︃
is invertible.

(c) When S = {(0, i), (0, j), (0, k)} for some 0 ≤ i < j < k ≤ d and E = {0, 1, 2}, we 
see that (︄1

1
1 2

)︄
A

(d)
E,S =

(︄ 1 1 1
x y z
x2 y2 z2

)︄

is a Vandermonde matrix, where (x, y, z) = (d− i, d− j, d− k). Hence A(d)
E,S is invertible.

(d) When S = {(0, i), (0, j), (1, k)} for some 0 ≤ i < j ≤ d and 0 ≤ k ≤ d− 1, we see 
that(︄1

1
1 2

)︄
A

(d)
E,S

(︄1 1
−1

1

)︄(︄1
(x− y)−1

1

)︄
=

(︄ 1 0 0
x 1 1
x2 x + y 2z + 1

)︄
,

where (x, y, z) = (d− i, d− j, d−1−k). Assume that i+ j ̸= 2k+1. Then x+ y ̸= 2z+1
and hence A(d)

E,S is invertible. □
5.4. Valid outcomes of positive support ≤ 3

We now classify the valid outcomes of positive support ≤ 3. Recall that a valid outcome 
is a chip configuration w with supp−(w) ⊆ {0, 0} such that all Pascal equations vanish 
at w (Propositions 3.4, 3.8). We start with the following lemma.

Lemma 5.8. Let w be a valid outcome of degree d ≥ 1. Then the following hold:

(a) There are i, j ∈ {1, . . . , d} such that (i, 0), (0, j) ∈ supp+(w).
(b) There are distinct i, j ∈ {0, . . . , d} such that (i, d− i), (j, d− j) ∈ supp+(w).
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Proof. We use the Pascal equations ψk from Proposition 3.11. For d = 3, the coefficients 
of ψ0, ψ0, and ψd (left to right) look as follows:

(a) Since deg(w) > 0, we see that w is not the initial configuration. Since w is valid, 
by Lemma 3.19 we therefore have w0,0 < 0. Since ψ0(w) = 0, there must exist an 
i ∈ {0, . . . , d} such that wi,0 > 0. Likewise, since ψ0(w) = 0 there exists j ∈ {0, . . . , d}
such that w0,j > 0.

(b) Since deg(w) = d, there is an i ∈ {0, . . . , d} such that (i, d−i) ∈ supp+(w). Because 
of the alternating coefficients of ψd on the outermost diagonal and since ψd(w) = 0, we 
see that there must also be a j ∈ {0, . . . , d} \ {i} such that (j, d− j) ∈ supp+(w). □
Proposition 5.9. Let w be a valid degree-d outcome and assume that # supp+(w) ≤ 2. 
Then

supp+(w) = {(1, 0), (0, 1)}.

Proof. By the previous lemma, we see that

supp(w) = {(0, 0), (0, d), (d, 0)} =: S.

Assume that d ≥ 2. Then the construction from Remark 5.3 yields λ = (2, 1, . . . , 1) ∈ Nd. 
We get S1 = {(0, 0), (0, d)}, Sk = ∅ for k ∈ {2, . . . , d − 1} and Sd = {(d, 0)}. Using 
Propositions 5.4 and 5.6, we get

A
(d)
{0,1,d},S =

(︄
A

(d)
{0,1},S1

0
∗ A

(d)
{d},Sd

)︄
=

(︄
A

(d)
{0,1},S1

0
∗ A

(0)
{0},{(0,0)}

)︄

and by Proposition 5.7 the submatrices on the diagonal are both invertible. So A(d)
{0,1,d},S

is invertible. This contradicts the assumption that supp(w) = S and so d = 1. □
Lemma 5.10. Let w be a valid degree-d outcome and assume that # supp+(w) = 3. Then 
one of the following holds:

(a) We have supp(w) = {(0, 0), (d, 0), (0, d), (i, j)} for some i, j > 0 with deg(i, j) < d.
(b) We have supp(σ · w) = {(0, 0), (d, 0), (0, d), (e, 0)} for some σ ∈ S3 and 0 < e < d.
(c) We have supp(σ · w) = {(0, 0), (d, 0), (0, e), (d − f, f)} for some σ ∈ S2 and 0 <

e, f < d.

Proof. When (d, 0), (0, d) ∈ supp(w), then it is easy to see that (a) or (b) holds. So 
suppose this is not the case. Since # supp+(w) = 3, we must have (d, 0) ∈ supp(w) or 
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(0, d) ∈ supp(w) by Lemma 5.8. So there exists an σ ∈ S2 such that (d, 0) ∈ supp(σ ·w)
and (0, d) ̸∈ supp(σ · w). Now supp(σ · w) = {(0, 0), (d, 0), (0, e), (d − f, f)} for some 
0 < e, f < d by Lemma 5.8. □

We now apply the Invertibility Criterion to the possible outcomes in each of these 
cases.

Proposition 5.11. Let w be a degree-d outcome and assume that

supp(w) = {(0, 0), (d, 0), (0, d), (i, j)}

for some i, j > 0 with deg(i, j) < d. Then d = 3 and (i, j) = (1, 1).

Proof. Assume that i > 1. Then the Invertibility Criterion combined with Proposi-
tions 5.4, 5.6 and 5.7 with λ = (2, 1, . . . , 1) yields a contradiction. Indeed, we would find 
that

A
(d)
{0,1,i,d},S =

⎛⎜⎜⎝
A

(d)
{0,1},S1

0 0
∗ A

(d)
{i},S2

0
∗ ∗ A

(d)
{d},S3

⎞⎟⎟⎠
is invertible where S = S1 ∪ S2 ∪ S3 = {(0, 0), (0, d)} ∪ {(i, j)} ∪ {(d, 0)}. So i = 1. 
Applying the same argument to (12) ·w shows that j = 1. Assume that d > 3. Then we 
apply the same strategy again with λ = (3, 1, . . . , 1). We get a contradiction since

A
(d)
{0,1,2,d},S =

(︄
A

(d)
{0,1,2},S1

0
∗ A

(d)
{d},S2

)︄

is invertible, where S = S1 ∪ S2 = {(0, 0), (0, d), (1, 1)} ∪ {(d, 0)}, by Proposition 5.7. So 
d = 3. □
Proposition 5.12. Let w be a degree-d outcome and assume that

supp(w) = {(0, 0), (d, 0), (0, d), (e, 0)}

for some 0 < e < d. Then d = 2 and e = 1.

Proof. The Invertibility Criterion with λ = (2, 1, . . . , 1) yields e = 1. The Invertibility 
Criterion with λ = (3, 1, . . . , 1) applied to (12) · w now yields d = 2. □
Proposition 5.13. Let w be a degree-d outcome and assume that

supp(w) = {(0, 0), (d, 0), (0, e), (d− f, f)}
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for some 0 < e, f < d. Then d = 2 and e = f = 1.

Proof. The Invertibility Criterion with λ = (2, 1, . . . , 1) yields (d− f, f) = (1, d− 1). In 
particular, we have e ≤ f . Applying the same argument to (12) ·w with λ = (2, 1, . . . , 1)
if e ̸= f or λ = (2, 1, . . . , 1, 2, 1, . . . , 1) if e = f , we find that e = 1. In the latter case, we 
have E = {0, 1, e, e + 1} and S = {(0, 0), (0, d), (e, 0), (e, 1)} so that

A
(d)
E,S =

(︄
A

(d)
{0,1},S1

0
∗ A

(1)
{0,1},S2

)︄

where S1 = {(0, 0), (0, d)} and S2 = {(0, 0), (0, 1)}. The Invertibility Criterion with 
λ = (3, 1, . . . , 1) now yields d = 2. □
Theorem 5.14. Let w be a valid outcome of positive support ≤ 3. Then w is a nonnegative 
multiple of one of the following outcomes:

Proof. We know by the previous results that supp+(w) is one of the following:

{(0, 1), (1, 0)}, {(0, 3), (1, 1), (3, 0)}, {(0, 1), (0, 2), (2, 0)}, {(0, 2), (1, 0), (2, 0)},
{(0, 2), (1, 1), (2, 0)}, {(0, 1), (1, 1), (2, 0)}, {(0, 2), (1, 0), (1, 1)}.

For each of these possible supports E, we compute the space of outcomes whose supports 
are contained in E∪{(0, 0)} by computing the space of solutions to the Pascal equations 
of the corresponding degree. For each E, this space has dimension 1 (over Q). We find 
that the outcomes with support

{(0, 0), (0, 1), (0, 2), (2, 0)} and {(0, 0), (0, 2), (1, 0), (2, 0)}

are never valid. In each of the other cases, every valid outcome is a multiple of one in 
the list. □
Example 5.15. We illustrate the last step of the proof of Theorem 5.14 in which we 
compute the space of outcomes with given support. Let d = 3. Then the following 
coefficients give a basis of the Pascal equations on Vd (by Proposition 3.15):

Consider the support S = {(0, 0), (0, 3), (1, 1), (3, 0)}, illustrated by the following picture:
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According to the Pascal equations, chip configurations w with this support are outcomes 
if and only if they satisfy

w0,0 = −w0,3, 3w0,0 = −w1,1, w0,0 = −w3,0.

Therefore, the space of such outcomes is one-dimensional and it contains the valid out-
come

(w0,0, w0,3, w3,0, w1,1) = (−1, 1, 1, 3).

For a negative example, let d = 2. Then the space of Pascal equations is spanned by 
three equations given by the following coefficients:

Combined with the support

these equations lead to the conditions

w0,0 + w0,1 + w0,2 = 0, 2w0,0 = −w0,1, w0,0 = −w2,0.

The space of solutions to these equations is again one-dimensional but none of the nonzero 
solutions are valid because the equations imply w0,0 = w0,2.

6. Valid outcomes of positive support 4

In this section we prove Theorem 1.9 for valid outcomes whose positive support has 
size 4. To do this we introduce our second tool, the Hyperfield Criterion, which shows 
that certain subsets of Vd cannot be the support of a valid outcome. We first recall the 
basic properties of hyperfields.

6.1. Polynomials over hyperfields

Denote by 2H the power set of a set H.

Definition 6.1. A hyperfield is a tuple (H,+, ·, 0, 1) consisting of a set H, symmetric maps

• + • : H ×H → 2H \ {∅}, • · • : H ×H → H
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and distinct elements 0, 1 ∈ H satisfying the following conditions:

(a) The tuple (H \ {0}, ·, 1) is a group.
(b) We have 0 · x = 0 and 0 + x = {x} for all x ∈ H.
(c) We have 

⋃︁
w∈x+y(w + z) =

⋃︁
w∈y+z(x + w) for all x, y, z ∈ H.

(d) We have a · (x + y) = (a · x) + (a · y) for all a, x, y ∈ H.
(e) For every x ∈ H there is an unique element −x ∈ H such that x + (−x) ∋ 0.

For subsets X,Y ⊆ H, we write

X + Y :=
⋃︂

x∈X,y∈Y

(x + y).

We also identify elements y ∈ H with the singletons {y} ⊆ H so that

y + X := X + y :=
⋃︂
x∈X

(x + y).

With this notation, condition (c) can be reformulated as (x+ y) + z = x+ (y+ z) for all 
x, y, z ∈ H.

See [5] for more background and uses of hyperfields.

Definition 6.2. Let H be a hyperfield.

(a) A polynomial in variables x1, . . . , xn over H is a formal sum

f =
∑︂

(k1,...,kn)∈Zn
≥0

sk1...kn
xk1

1 · · ·xkn
n

where sk1...kn
∈ H and #{(k1, . . . , kn) ∈ Zn

≥0 | sk1...kn
̸= 0} < ∞.

(b) We denote the set of such polynomials by H[x1, . . . , xn].
(c) For s1, . . . , sn ∈ H, we write

f(s1, . . . , sn) :=
∑︂

k1,...,kn∈Z≥0

sk1...kn
sk1
1 · · · skn

n ⊆ H,

and we say that f vanishes at (s1, . . . , sk) when f(s1, . . . , sk) ∋ 0.

6.2. The sign hyperfield

For the remainder of this paper we let H be the sign hyperfield: it consists of the set 
H = {1, 0,−1} with the addition defined by
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0 + x = x, 1 + 1 = 1, (−1) + (−1) = −1, 1 + (−1) = {1, 0,−1}

and the usual multiplication.

Definition 6.3. Let H be the sign hyperfield and let

f =
∑︂

k1,...,kn∈Z≥0

ck1...kn
xk1

1 · · ·xkn
n ∈ R[x1, . . . , xn]

be a polynomial. Then we call

sign(f) :=
∑︂

k1,...,kn∈Z≥0

sign(ck1...kn
)xk1

1 · · ·xkn
n ∈ H[x1, . . . , xn]

the polynomial over H induced by f . We also write

sign(w) := (sign(w1), . . . , sign(wn))

for all w = (w1, . . . , wn) ∈ Rn.

Let φ be a Pascal equation on ZVd . Then we can represent sign(φ) as a triangle consist-
ing of the symbols +, ., - indicating that a given coefficient equals 1, 0,−1, respectively.

Example 6.4. Take d = 5. Then the linear forms sign(ϕk,d−k) for k = 0, . . . , d can be 
depicted as:

The linear forms sign(ψk) for k = 0, . . . , d can be depicted as:

The linear forms sign(ψk) for k = 0, . . . , d can be depicted as:
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Proposition 6.5. Let H be the sign hyperfield and f ∈ R[x1, . . . , xn]. Suppose that f
vanishes at w ∈ Rn. Then sign(f) vanishes at sign(w) ∈ Hn.

Proof. Write w = (w1, . . . , wn), s = (s1, . . . , sn) = sign(w) and

f =
∑︂

k1,...,kn∈Z≥0

ck1...kn
xk1

1 · · ·xkn
n .

Then we have ∑︂
k1,...,kn∈Z≥0

ck1...kn
wk1

1 · · ·wkn
n = f(w) = 0.

If ck1...kn
wk1

1 · · ·wkn
n = 0 for all k1, . . . , kn ∈ Z≥0, then sign(f)(s1, . . . , sn) = {0} ∋ 0

since all summands are zero. Otherwise, we have cℓ1...ℓnw
ℓ1
1 · · ·wℓn

n > 0 for some 

ℓ1, . . . , ℓn ∈ Z≥0 and cℓ′1...ℓ′nw
ℓ′1
1 · · ·wℓ′n

n < 0 for some ℓ′1, . . . , ℓ
′
n ∈ Z≥0. In this case, 

sign(f)(s1, . . . , sn) has both 1 and −1 as summands, so sign(f)(s1, . . . , sn) = H ∋ 0. □
6.3. The hyperfield criterion

We now state the Hyperfield Criterion. Let S ⊆ Vd \ {(0, 0)} be a subset and define 
s = (si,j)(i,j)∈Vd

∈ HVd by

si,j :=

⎧⎪⎨⎪⎩
−1 when (i, j) = (0, 0),
1 when (i, j) ∈ S,
0 otherwise.

Let w = (wi,j)(i,j)∈Vd
∈ ZVd be a valid outcome.

Proposition 6.6 (Hyperfield Criterion). Suppose that sign(φ) does not vanish at s for 
some Pascal equation φ on ZVd . Then supp+(w) ̸= S.

Proof. Suppose that supp+(w) = S. Then sign(w) = s. Since all Pascal equations φ on 
ZVd vanish at w, we see that all polynomials over H induced by Pascal equations on ZVd

vanish at s by Proposition 6.5. □
6.4. Pascal equations

In this subsection, we consider the equations over H induced by the Pascal equations 
ψk, ψk, ϕa,b for k ∈ {0, . . . , d} and (a, b) ∈ Vd of degree d.

Definition 6.7. Let s = (si,j)(i,j)∈Vd
∈ HVd .
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(a) We call s a sign configuration.
(b) The positive support of s is supp+(s) := {(i, j) ∈ Vd | si,j = 1}.
(c) The negative support of s is supp−(s) := {(i, j) ∈ Vd | si,j = −1}.
(d) The support of s is supp(s) := {(i, j) ∈ Vd | si,j ̸= 0} = supp+(s) ∪ supp−(s).
(e) We call deg(s) := max{deg(i, j) | (i, j) ∈ Vd, si,j ̸= 0} the degree of s.
(f) We say that s is valid when s = 0 or supp−(s) = {(0, 0)}.
(g) We say that s is weakly valid when for all (i, j) ∈ supp−(s) one of the following 

holds:

(a) 0 ≤ i, j ≤ 3,
(b) 0 ≤ i ≤ 3 and deg(i, j) ≥ d− 3, or
(c) 0 ≤ j ≤ 3 and deg(i, j) ≥ d− 3.

Lemma 6.8. Let w ∈ ZVd be a chip configuration.

(a) We have supp+(sign(w)) = supp+(w).
(b) We have supp−(sign(w)) = supp−(w).
(c) We have deg(sign(w)) = deg(w).
(d) The sign configuration sign(w) is (weakly) valid if and only if w is (weakly) valid.

Proof. This follows from the definitions. □
Lemma 6.9. 

(a) We have

sign(ϕa,b) =
a ∑︂

i=0 

b ∑︂
j=0 

xi,j

for all (a, b) ∈ Vd of degree d.
(b) We have

sign(ψk) =
∑︂

(i,j)∈S+
k

xi,j −
∑︂

(i,j)∈S−
k

xi,j and sign(ψk) =
∑︂

(i,j)∈S+
k

xj,i −
∑︂

(i,j)∈S−
k

xj,i,

where

S+
k := {(i, j) | 0 ≤ j ≤ k, k − j ≤ i ≤ d− j, j ≡ k (mod 2)},

S−
k := {(i, j) | 0 ≤ j ≤ k, k − j ≤ i ≤ d− j, j ̸≡ k (mod 2)},

for all k ∈ {0, . . . , d}.
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Proof. This follows from Propositions 3.15 and 3.11. □
Proposition 6.10. Let s ∈ HVd be a valid sign configuration of degree d ≥ 1.

(a) For (a, b) ∈ Vd of degree d, if sign(ϕa,b) vanishes at s, then sign(ϕa,b)(s) = H.
(b) If sign(ψ0), . . . , sign(ψd) vanish at s, then sign(ψ0)(s) = · · · = sign(ψd)(s) = H.
(c) If sign(ψ0), . . . , sign(ψd) vanish at s, then sign(ψ0)(s) = · · · = sign(ψd)(s) = H.

Proof. Note that since deg(s) = d ≥ 1, we have s0,0 = −1, si,j ≥ 0 for all (i, j) ∈
Vd \ {(0, 0)} and sk,d−k = 1 for some k ∈ {0, . . . , d}.

(a) Let (a, b) ∈ Vd have degree d and suppose that

a ∑︂
i=0 

b ∑︂
j=0 

si,j ∋ 0.

Since s0,0 = −1, this is only possible when si,j = 1 for some i ∈ {0, . . . , a} and j ∈
{0, . . . , b} and so sign(ϕa,b)(s) = H.

(b) Suppose that sign(ψ0), . . . , sign(ψd) vanish at s. We have

sign(ψk) =
∑︂

(i,j)∈S+
k

xi,j −
∑︂

(i,j)∈S−
k

xi,j

where S+
k , S−

k ⊆ Vd are as in Lemma 6.9. We have ψ0 = ϕd,0 and so sign(ψ0)(s) =
sign(ϕd,0)(s) = H. For k > 0, note that (0, 0) ̸∈ S+

k ∪ S−
k and in particular si,j ≥ 0 for 

all (i, j) ∈ S+
k ∪ S−

k . So for each k ∈ {1, . . . , d}, we see that either

(ak) si,j = 0 for all (i, j) ∈ S+
k ∪ S−

k ; or
(bk) si,j = 1 for some (i, j) ∈ S+

k and si,j = 1 for some (i, j) ∈ S−
k .

We prove that (bk) holds for k = d, . . . , 1 recursively, which implies that sign(ψk)(s) = H.
The union S+

d ∪ S−
d consists of all vertices in Vd of degree d. So (ad) cannot hold. So 

(bd) holds. Next, let k ∈ {1, . . . , d− 1} and suppose that (bk+1) holds. Then si,j = 1 for 
some (i, j) ∈ S−

k+1. We have S−
k+1 ⊆ S+

k and hence (ak) cannot hold. Hence (bk) holds. 
So (bk) holds for all k ∈ {1, . . . , d}.

(c) The proof of this part is the same as that of the previous part. □
Remark 6.11. Let w ∈ ZVd be a valid outcome of degree d. Then sign(φ) vanishes at

s = (si,j)(i,j)∈Vd
= sign(w)

for all Pascal equations φ on ZVd . Proposition 6.10 tells us that in this case, we have

sign(ϕ0,d)(s), . . . , sign(ϕd,0)(s), sign(ψ0)(s), . . . , sign(ψd)(s), sign(ψ0)(s), . . . , sign(ψd)(s) = H,
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which shows that the following hold:

(a) for all (a, b) ∈ Vd of degree d, there exist i ∈ {0, . . . , a} and j ∈ {0, . . . , b} with 
si,j = 1;

(b) for all k ∈ {1, . . . , d}, there exist (i, j) ∈ S+
k with si,j = 1 and (i, j) ∈ S−

k with 
si,j = 1; and

(c) for all k ∈ {1, . . . , d}, there exist (i, j) ∈ S+
k with sj,i = 1 and (i, j) ∈ S−

k with 
sj,i = 1.

Here we note that si,j = 1 if and only if (i, j) ∈ supp+(w). So we can view these 
conditions as restrictions on the set supp+(w).

6.5. Contractions of hyperfield solutions

In this subsection we make progress by reducing the set of things to be considered 
for our classification from infinite to finite. For a weakly valid s ∈ HVd we define a 
hyperfield vector contrd(s) ∈ HΞ where Ξ is a finite set which is independent of d. The 
vector contrd(s) is obtained from s by considering only a subset of the entries of s, and 
by replacing certain sets of entries of s (with cardinalities growing linearly with d) by 
their sum (with cardinality one). We call contrd(s) the contraction of s because we think 
of this summation of entries of s as a contraction of s. The elements of HΞ have their 
own notion of being valid such that

s valid ⇒ contrd(s) valid.

This turns out to be enough to classify valid chipsplitting outcomes w of positive support 
4 by passing to contrd(sign(w)) and analyzing the finitely many possibilities.

We start by considering the four-entries thick outer ring of the triangle Vd. We divide 
the outer ring into six areas as illustrated in Fig. 5. One of these, Area D, splits further 
into D(0) and D(1) according to the parity of the i-coordinate of its entries.

Let xi,j be the formal variables indexed by the elements of Vd. We rename and combine 
these variables according to their assigned area:

yi,j := xi,d−3−i+j for i, j ∈ {0, . . . , 3},
zi,j := xd−3−j+i,j for i, j ∈ {0, . . . , 3},
bj :=

∑︁d−4−j
i=4 xi,j for j ∈ {0, . . . , 3},

ci :=
∑︁d−4−i

j=4 xi,j for i ∈ {0, . . . , 3},

d
(0)
k :=

∑︁⌊(d−4−k)/2⌋
ℓ=2 x2ℓ,d−2ℓ−k for k ∈ {0, . . . , 3},

d
(1)
k :=

∑︁⌊(d−5−k)/2⌋
ℓ=2 x2ℓ+1,d−(2ℓ+1)−k for k ∈ {0, . . . , 3}.
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Fig. 5. Dividing the outer ring of the triangle Vd into six areas for Subsection 6.5. The area D splits into 
two parts D(0) and D(1) by alternating the columns.

For the bs, cs, and ds, this results in compressing a number of variables that grows 
linearly with d down into a single variable, whereas the renamings of the first two lines 
are just for convenience. Next, we consider two sets Φ1, Φ2 of Pascal equations on Vd

defined by

Φ1 = {ψ1, ψ2, ψ3,

ψ1, ψ2, ψ3,

ϕ1,d−1, ϕ2,d−2, ϕ3,d−3,

ϕd−1,1, ϕd−2,2, ϕd−3,3},

Φ2 = {ψd−3, ψd−2, ψd−1, ψd,

ψd−3, ψd−2, ψd−1, ψd},

and call their union Φ. We want to apply these Pascal equations to valid sign configu-
rations s ∈ HVd . The next two lemmas show that this operation is governed by a finite 
set of linear forms over H which is independent of d. We assume that d is large enough 
to have each of the above variables defined. Specifically, the assumption d ≥ 11 ensures 
that all xi,j , yi,j , zi,j , bj , ci, and d(0)

k are defined, whereas d ≥ 12 additionally ensures 
that all d(1)

k are defined.

Lemma 6.12. Assume that d ≥ 11 and let φ ∈ Φ1. Then

sign(φ) = ˆ︁φ(xi,j , yi,j , zi,j , bj , ci, d
(0)
k , d

(1)
k )

for some linear form

ˆ︁φ(xi,j , yi,j , zi,j , bj , ci, d
(0)
k , d

(1)
k ) ∈ H[xi,j , yi,j , zi,j , bj , ci, d

(0)
k , d

(1)
k | i, j, k ∈ {0, . . . , 3}]

Moreover, the linear form ˆ︁φ does not depend on d.

Proof. As illustrated in Example 6.4, the equations ψ1, ψ2, and ψ3 are supported in 
the sections Y , C, and X from Fig. 5. Furthermore, the signs of their coefficients are 
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constant along the columns of C. Therefore, the set of coefficients in column i of C may 

be replaced with a single coefficient of the variable ci. This results in linear forms ˆ︁ψ1, 
ˆ︁ψ2, 

and ˆ︁ψ3 over H where only the variables xi,j , yi,j and ci appear. The coefficients of these 
linear forms are independent of d because the constant sign of the ψi along the columns 
of C does not change with d. The same argument applies to the equations ϕ1,d−1, ϕ2,d−2, 
and ϕ3,d−3. The remaining Pascal equations in Φ1 are handled by a symmetric argument 
involving the sections X, B, and Z and their associated variable, considering the rows 
of B instead of the columns of C. □

Example 6.13. Take φ = ϕ3,d−3. We can depict sign(φ) as follows (for d = 11):

Take

ˆ︁φ = ˆ︁ϕ3,d−3 =
3 ∑︂

i=0 

3 ∑︂
j=0 

xi,j +
3 ∑︂

i=0 
ci +

3 ∑︂
i=0 

i ∑︂
j=0 

yi,j .

Then we see that

sign(ϕ3,d−3) =
3 ∑︂

i=0 

d−3 ∑︂
j=0 

xi,j

=
3 ∑︂

i=0 

3 ∑︂
j=0 

xi,j +
3 ∑︂

i=0 
(xi,4 + . . . + xi,d−4−i) +

3 ∑︂
i=0 

i ∑︂
j=0 

xi,d−3−i+j

= ˆ︁ϕ3,d−3.

Indeed, the linear form ˆ︁φ is the same for every d ≥ 11.
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Lemma 6.14. Assume that d ≥ 12 and let φ ∈ Φ2. Then

sign(φ) =
{︄ ˆ︁φeven(xi,j , yi,j , zi,j , bj , ci, d

(0)
k , d

(1)
k ) when d is even,ˆ︁φodd(xi,j , yi,j , zi,j , bj , ci, d

(0)
k , d

(1)
k ) when d is odd

for some linear forms

ˆ︁φeven, ˆ︁φodd ∈ H[xi,j , yi,j , zi,j , bj , ci, d
(0)
k , d

(1)
k | i, j, k ∈ {0, . . . , 3}].

Moreover, the linear forms ˆ︁φeven, ˆ︁φodd do not depend on d.

Proof. Analogous to the proof of Lemma 6.12. As Example 6.4 illustrates, the equations 
in Φ2 are supported in Y , D, and Z. The signs of their coefficients alternate along 
each northwest-to-southeast diagonal of D. Therefore, the coefficients of the variables 
associated to these diagonals may be replaced by a single coefficient in front of the 
difference (d(0)

k − d
(1)
k ). This results in linear forms over H where only the yi,j , zi,j , d(0)

k , 
and d(1)

k appear. These linear forms are independent of d of the same parity, which can 
be seen most directly by applying the formulas for the ψ and ψ in Proposition 3.15. □
Remark 6.15. For different parities of d, the ˆ︁ψd−k differ in Z while the ˆ︁ψd−k differ in Y
and D.

Example 6.16. Take φ = ψd−3. We can depict sign(φ) (for d = 12) as follows:

Take

ˆ︁φeven = ˆ︁ψeven
d−3 =

3 ∑︂
i=0 

i ∑︂
j=0 

(−1)i+jyi,j −
1 ∑︂

i=0 

3 ∑︂
k=0

(−1)i+kd
(i)
k −

3 ∑︂
j=0 

3 ∑︂
i=0 

(−1)jzi,j ,

ˆ︁φodd = ˆ︁ψodd
d−3 =

3 ∑︂
i=0 

i ∑︂
j=0 

(−1)i+jyi,j −
1 ∑︂

i=0 

3 ∑︂
k=0

(−1)i+kd
(i)
k +

3 ∑︂
j=0 

3 ∑︂
i=0 

(−1)jzi,j .
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Then we see that

sign(ψd−3) = (−1)d−3
d−3 ∑︂
j=0 

3 ∑︂
i=0 

(−1)jxd−3−j+i,j

=
3 ∑︂

i=0 

i ∑︂
j=0 

(−1)i+jxi,d−3−i+j −
1 ∑︂

i=0 

3 ∑︂
k=0

(−1)i+kd
(i)
k

+
3 ∑︂

j=0 

3 ∑︂
i=0 

(−1)d−1+jxd−3−j+i,j

=
{︄ ˆ︁ψeven

d−3 when d is even,ˆ︁ψodd
d−3 when d is odd.

Indeed, the linear forms ˆ︁φeven and ˆ︁φodd are independent of d for d ≥ 12.

Next we carry out the same subdivision as above but with the coordinates of the 
elements s ∈ HVd instead of formal variables. We start by defining the index set

Ξ = {0, 1, 2, 3}2 ⊔ {0, 1, 2, 3}2 ⊔ {0, 1, 2, 3}2 ⊔ {0, 1, 2, 3} ⊔ {0, 1, 2, 3} ⊔ {0, 1, 2, 3} ⊔ {0, 1, 2, 3}.

We write elements of HΞ as

θ = (s, r, t, α, β, γ)

=
(︂
(si,j)3i,j=0, (ri,j)3i,j=0, (ti,j)3i,j=0, (αi)3i=0, (βj)3j=0, (γ

(0)
k )3k=0, (γ

(1)
k )3k=0

)︂
.

Definition 6.17. 

(a) We say that θ is valid when θ = 0 or when s0,0 = −1 and ri,j , ti,j , αi, βj , γ
(0)
k , γ

(1)
k ≥ 0

for all i, j, k ∈ {0, . . . , 3} and si,j ≥ 0 for all (i, j) ∈ {0, . . . , 3}2 \ {(0, 0)}.
(b) We say that θ is weakly valid when αi, βj , γ

(0)
k , γ

(1)
k ≥ 0 for all i, j, k ∈ {0, . . . , 3}.

Thus θ is weakly valid if and only if its negative support is contained in the areas 
X,Y, Z of Fig. 5.

For d ≥ 11 and s = (si,j)(i,j)∈Vd
∈ HVd weakly valid, we write

contrd(s) :=
(︂
(si,j)3i,j=0, (ri,j)3i,j=0, (ti,j)3i,j=0, (αi)3i=0, (βj)3j=0, (γ

(0)
k )3k=0, (γ

(1)
k )3k=0

)︂
∈ HΞ,

where we have

ri,j := si,d−3−i+j for i, j ∈ {0, . . . , 3},
ti,j := sd−3−j+i,j for i, j ∈ {0, . . . , 3},
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y0,3
y0,2 y1,3
y0,1 y1,2 y2,3
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(0)
0

c0 c1 y2,0 y3,1 d
(0)
1 d

(1)
0

c0 c1 c2 y3,0 d
(0)
2 d

(1)
1 d

(0)
0

c0 c1 c2 c3 d
(0)
3 d

(1)
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(0)
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(1)
0

c0 c1 c2 c3 d
(1)
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(0)
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(1)
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c0 c1 c2 c3 d
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3 d

(0)
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(1)
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c0 c1 c2 c3 d
(0)
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(1)
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(0)
1 d

(1)
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c0 c1 c2 c3 d
(1)
3 d

(0)
2 d

(1)
1 d

(0)
0

x0,3 x1,3 x2,3 x3,3 b3 b3 b3 b3 b3 b3 z0,3 z1,3 z2,3 z3,3
x0,2 x1,2 x2,2 x3,2 b2 b2 b2 b2 b2 b2 b2 z0,2 z1,2 z2,2 z3,2
x0,1 x1,1 x2,1 x3,1 b1 b1 b1 b1 b1 b1 b1 b1 z0,1 z1,1 z2,1 z3,1
x0,0 x1,0 x2,0 x3,0 b0 b0 b0 b0 b0 b0 b0 b0 b0 z0,0 z1,0 z2,0 z3,0

Fig. 6. A visualisation of contrd for d = 16. 

αi :=
∑︁d−4−i

j=4 si,j for i ∈ {0, . . . , 3},
βj :=

∑︁d−4−j
i=4 si,j for j ∈ {0, . . . , 3},

γ
(0)
k :=

∑︁⌊(d−4−k)/2⌋
ℓ=2 s2ℓ,d−2ℓ−k for k ∈ {0, . . . , 3},

γ
(1)
k :=

∑︁⌊(d−5−k)/2⌋
ℓ=2 s2ℓ+1,d−(2ℓ+1)−k for k ∈ {0, . . . , 3}.

Let s1, . . . , sk ∈ H \ {−1}. Then s1 + . . . + sk always consists of a single element, 
namely the element max(s1, . . . , sk). So the weakly valid assumption ensures that the 
hyperfield sums in this definition evaluate to a single element of H. Note that when 
s ∈ HVd is (weakly) valid, then contrd(s) is (weakly) valid as well.

Let the coordinates xi,j , yi,j , zi,j , bj , ci, d
(0)
k , d

(1)
k be dual to si,j , ri,j , ti,j , αi, βj , γ

(0)
k , 

γ
(1)
k . This allows us to view {ˆ︁φ | φ ∈ Φ1}, {ˆ︁φeven | φ ∈ Φ2} and {ˆ︁φodd | φ ∈ Φ2} as sets 

of equations on HΞ. See Fig. 6 for a visualisation of contrd.

Definition 6.18. Let θ ∈ HΞ. We define the positive support of θ to be the set supp+(θ)
of symbols xi,j , yi,j , zi,j , bj , ci, d

(0)
k , d

(1)
k with i, j, k ∈ {0, . . . , 3} such that the symbol 

evaluated at θ equals 1.

Example 6.19. Let

θ =
(︂
(si,j)3i,j=0, (ri,j)3i,j=0, (ti,j)3i,j=0, (αi)3i=0, (βj)3j=0, (γ

(0)
k )3k=0, (γ

(1)
k )3k=0

)︂
∈ HΞ

be defined by s0,0 = −1, s0,3 = s1,1 = s3,0 = γ
(0)
0 = γ

(1)
0 = 1 and by setting all other 

entries to 0. Then θ is valid and supp+(θ) = {x0,3, x1,1, x3,0, d
(0)
0 , d

(1)
0 }.

For the next proposition we use the following notation:
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(a) Denote by Γd the set of valid s ∈ HVd of degree d such that sign(φ)(s) = H for all 
φ ∈ Φ.

(b) Denote by Γeven the set of valid θ ∈ HΞ such that ˆ︁φeven(θ) = H for all φ ∈ Φ.
(c) Denote by Γodd the set of valid θ ∈ HΞ such that ˆ︁φodd(θ) = H for all φ ∈ Φ.

Here we set ˆ︁φeven := ˆ︁φodd := ˆ︁φ for all φ ∈ Φ1. For fixed d, we view contrd as a map from 
the space of weakly valid outcomes in HVd to HΞ.

Proposition 6.20. Assume that d ≥ 12. Then

Γd =
{︄

contr−1
d (Γeven) when d is even,

contr−1
d (Γodd) when d is odd.

In particular, we have contrd(sign(w)) ∈ Γeven ∪ Γodd for all valid outcomes w ∈ ZVd .

Proof. For d even, Lemmas 6.12 and 6.14 imply ˆ︁φeven(contrd(s)) = sign(φ)(s) for all 
s ∈ HVd and φ ∈ Φ. Thus s ∈ Γd is equivalent to contrd(s) ∈ Γeven for all s ∈ HVd . 
The same reasoning applies when d is odd, which proves the first statement. The second 
statement follows because sign(w) ∈ Γd by Proposition 6.10. □
6.6. Valid outcomes of positive support 4

We now finally classify the valid outcomes w ∈ ZVd whose positive support has size 
4.

Theorem 6.21. Let w ∈ ZVd be a valid outcome and suppose that # supp+(w) = 4. Then 
deg(w) ≤ 5.

Let Ωd be the set of valid s = (si,j)(i,j)∈Vd
∈ HVd of degree d such that # supp+(s) = 4

and

sign(ψk)(s) = sign(ψk)(s) = sign(ϕa,b)(s) = H

for all k ∈ {0, . . . , d} and (a, b) ∈ Vd of degree d. We start with the following lemma.

Lemma 6.22. Let s ∈ HVd be valid of degree d such that # supp+(s) ≤ 4.

(a) If d = 6, then s ∈ Ωd if and only if supp+(s) is one of the following sets:

{(0, 3), (1, 5), (4, 1), (6, 0)}, {(0, 5), (1, 1), (3, 3), (6, 0)}, {(0, 6), (1, 1), (3, 3), (5, 0)},
{(0, 6), (1, 1), (3, 3), (6, 0)}, {(0, 6), (1, 4), (3, 0), (5, 1)}.
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0

d

d

d − ℓ1

d − ℓ2

d′

d′

Fig. 7. Illustration of the Hexagon Criterion. If w is an outcome whose support is contained in the highlighted 
area, then its restriction w′ to the bottom-left highlighted triangle is also an outcome. If in addition w is 
valid, then supp(w) is entirely contained in the bottom-left highlighted triangle.

(b) If d = 7, then s ∈ Ωd if and only if supp+(s) is one of the following sets:

{(0, 7), (1, 1), (3, 3), (7, 0)}, {(0, 7), (1, 3), (5, 1), (7, 0)}, {(0, 7), (1, 5), (3, 1), (7, 0)}.

(c) If d ∈ {8, . . . , 11}, then s ̸∈ Ωd.
(d) If d ≥ 12, then s ̸∈ Γd.

Proof. Parts (a)-(c) are verified by computer. For (d), we verify by computer that Γeven

and Γodd do not contain any vertices whose positive support has size ≤ 4. This is possible 
since the sets HΞ and Φ are finite. Thus by Proposition 6.20 we have s ̸∈ Γd. □
Proof of Theorem 6.21. Let w ∈ ZVd be a valid outcome and suppose that # supp+(w) =
4. We may assume that deg(w) = d. Suppose that deg(w) ≥ 6. Take s := sign(w). Then 
s ∈ Ωd ⊆ Γd. By Lemma 6.22, deg(s) ∈ {6, 7} and there are only 8 possibilities for 
supp+(w). In every case, it is easy to verify that no valid w with such a positive support 
exist using the Invertibility Criterion. Hence deg(w) ≤ 5. □
7. Valid outcomes of positive support 5

In this section we prove Conjecture 1.9 for valid outcomes whose positive support 
has size 5. To do this we introduce our third tool, the Hexagon Criterion, illustrated in 
Fig. 7. 

7.1. The hexagon criterion

Let ℓ1, ℓ2 ≥ d′ ≥ 1 be integers such that d′ + ℓ1 + ℓ2 ≤ d. Let w = (wi,j)(i,j)∈Vd
∈ ZVd

be a chip configuration and write w′ = (wi,j)(i,j)∈Vd′ ∈ ZVd′ .

Proposition 7.1 (Hexagon Criterion). Suppose that

supp(w) ⊆ Vd′ ∪ {(i, j) ∈ Vd | j > d− ℓ1} ∪ {(i, j) ∈ Vd | i > d− ℓ2}
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holds. Then the following statements hold:

(a) If w′ is not an outcome, then w is not an outcome.
(b) If w is a valid outcome, then deg(w) ≤ d′.

Proof. (a) We suppose that w is an outcome and prove w′ is also an outcome. For 
k ∈ {0, . . . , d′}, let ˆ︁ϕk be the linear form obtained from ϕℓ1+k,d−ℓ1−k by setting xi,j to 0
for all (i, j) ∈ Vd with deg(i, j) > d′. Then ˆ︁ϕ0, . . . , ˆ︁ϕd′ are Pascal equations on ZVd′ and 
we have

ˆ︁ϕk(w′) = ϕℓ1+k,d−ℓ1−k(w) = 0

for all k ∈ {0, . . . , d′}. We next prove that these equations are linearly independent. For 
a ∈ {0, . . . , d′} define e(a) = (e(a)

i,j )(i,j)∈Vd′ ∈ ZVd′ by

e
(a)
i,j :=

{︄
1 when (i, j) = (a, d′ − a),
0 otherwise

and consider the matrix

A =
(︂ˆ︁ϕk(e(a))

)︂d′

k,a=0
=

(︃(︃
d− d′

ℓ1 + k − a

)︃)︃d′

k,a=0
=

(︃(︃
(d− d′ − ℓ1) + ℓ1

ℓ1 + k − a 

)︃)︃d′

k,a=0
.

If A is invertible, then ˆ︁ϕ0, . . . , ˆ︁ϕd′ must be linearly independent. Note that we have 
0 ≤ ℓ1 +k−a ≤ d−d′, so all entries of A are nonzero. Also note that d−d′−ℓ1 ≥ ℓ2 ≥ 0. 
Applying Theorem 8 in the note [9] with a := d− d′ − ℓ1, b := ℓ1 and c := d′ + 1 yields

det(A) = H(ℓ1)H(d− d′ − ℓ1)H(d′ + 1)H(d + 1)
H(d− d′)H(d′ + ℓ1 + 1)H(d− ℓ1 + 1) ̸= 0,

where H(n) = 1!2! · · ·n!. So A is invertible and ˆ︁ϕ0, . . . , ˆ︁ϕd′ are d′+1 linearly independent 
Pascal equations on ZVd′ . These equations must be a basis of the space of all Pascal 
equations on ZVd′ . Since ˆ︁ϕ0(w′) = . . . = ˆ︁ϕd′(w′) = 0, it follows that w′ is an outcome.

(b) Suppose that w is a valid outcome. Then w′ must also be an outcome by part (a). 
Extend w′ to an element w′′ ∈ ZVd by setting w′′

i,j = w′
i,j for (i, j) ∈ Vd′ and w′′

i,j = 0 for 
(i, j) ∈ Vd with deg(i, j) > d′. Then w′′ is again an outcome. Now we see that w−w′′ is 
an outcome with an empty negative support. So w−w′′ must be the initial configuration 
by Lemma 3.19. Hence w = w′′ has degree ≤ d′. □
7.2. Valid outcomes of positive support 5

In this subsection we use the techniques developed in the previous sections, plus the 
Hexagon Criterion, to prove that a valid outcome w with positive support 5 has degree 
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≤ 7. We completed the computer-checked steps of the proof using the code published at 
https://mathrepo.mis.mpg.de/ChipsplittingModels/.

Our strategy for this proof is to use the contraction map to reduce to finitely many 
cases, as we did in Section 6. We have # supp+(w) ≤ 5, therefore supp+(contrd(sign(w)))
also has size ≤ 5. Recall that for d large enough, Γeven and Γodd do not contain any 
elements with a positive support of size ≤ 4 (Lemma 6.22). Therefore, contrd(sign(w)) ∈
Γeven∪Γodd must in fact have a positive support of size exactly 5. We verify by computer 
that Γeven contains 1283 elements whose positive support has size 5 and Γodd contains 
1265 such elements. Our strategy is to split into 1283 + 1265 cases, and in each case 
assume that contrd(sign(w)) is some fixed element of Γeven ∪ Γodd. If we can show that 
none of these cases can occur we are done.

Before doing this, we make one simplification: write

Ξ′ := {0, 1, 2, 3}2 ⊔ {0, 1, 2, 3}2 ⊔ {0, 1, 2, 3}2 ⊔ {0, 1, 2, 3} ⊔ {0, 1, 2, 3} ⊔ {0, 1, 2, 3}

and

χ(s, r, t, α, β, γ(0), γ(1)) := (s, r, t, α, β, γ(0) + γ(1))

for all weakly valid (s, r, t, α, β, γ(0), γ(1)) ∈ HΞ, where the addition of γ(0), γ(1) is defined 
componentwise. The composition contr′d := χ ◦ contrd can be visualized is the same way 
as contrd. We again get Fig. 6, but now d(0)

k and d(1)
k are replaced by dk.

Let Λ ⊆ HΞ′ be the set of elements χ(θ) with θ ∈ Γeven ∪ Γeven of positive support 5.

Definition 7.2. Let θ′ ∈ HΞ′ . We define the positive support of θ′ to be the set supp+(θ′)
of symbols xi,j , yi,j , zi,j , ci, bj , dk with i, j, k ∈ {0, . . . , 3} such that the symbol evaluated 
at θ′ equals 1.

Clearly, the elements of Λ have a positive support of size ≤ 5. It turns out that the 
positive support actually has size 5 in all but one case.

Lemma 7.3. Let θ′ ∈ Λ. Then exactly one of the following holds:

(a) The element θ′ has a positive support of size 5.
(b) We have θ′ = χ(θ) where θ ∈ HΞ is valid with supp+(θ) = {x0,3, x1,1, x3,0, d

(0)
0 , d

(1)
0 }.

Proof. This is verified by computer. □
The next lemma shows that case (b) of 7.3 cannot arise from a weakly valid outcome.

Lemma 7.4. Let d ≥ 12. Then there is no weakly valid outcome w = (wi,j)(i,j)∈Vd
such 

that

supp+(contrd(sign(w))) = {x0,3, x1,1, x3,0, d
(0)
0 , d

(1)
0 }.

https://mathrepo.mis.mpg.de/ChipsplittingModels/
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Proof. Suppose that such an outcome w exists. Then we have

supp(w) = {(0, 0), (0, 3), (1, 1), (3, 0), (i, d− i), (j, d− j)}

for some i, j ∈ {4, . . . , d} with i even and j odd. Let u = (ui,j)(i,j)∈Vd
be the outcome 

with

supp(u) = {(0, 0), (0, 3), (1, 1), (3, 0)}

defined by u0,0 = −1, u0,3 = u3,0 = 1 and u1,1 = 3. Take w′ = w + w0,0u ∈ ZVd . Note 
that w′ is an outcome. We have

{(i, d− i), (j, d− j)} ⊆ supp(w′) ⊆ {(0, 3), (1, 1), (3, 0), (i, d− i), (j, d− j)}.

We see that w′ cannot be the initial configuration. On the other hand, the Invertibility 
Criterion with λ = (1, . . . , 1) shows that w′ must be the initial configuration. This is a 
contradiction. □

Next, we look more closely at the elements θ′ ∈ Λ with positive support 5.

Lemma 7.5. Let θ′ ∈ Λ with a positive support of size 5.

(a) The set supp+(θ′) ∩ {c0, . . . , c3} has at most 1 element.
(b) The set supp+(θ′) ∩ {b0, . . . , b3} has at most 1 element.
(c) The set supp+(θ′) ∩ {d0, . . . , d3} has at most 1 element.

Proof. This is verified by computer. □
Next, given a valid outcome w ∈ ZVd with d ≥ 12, we extract information about its 

support that will be useful for applying the Invertibility Criterion later. Specifically, we 
define the map relcoord (“relative coordinates”) that turns an index i ∈ {0, . . . , d} into 
the placeholder M (“middle”) if i falls in the middle range between the first four and 
last seven indices, thereby excluding Fig. 5’s Areas X and Z in the i-coordinate, and 
Areas X and Y in the j-coordinate. Again, this has the effect of reducing sets of size 
linearly growing with d to a single finite set. Likewise, the map relset (“relative support 
set”) records the support of w in relative coordinates, i.e. using the symbol M whenever 
these coordinates fall into the aforementioned middle range. All this makes it easier to 
define partitions λ for using the Invertibility Criterion as described in Subsection 5.2.

Let w ∈ ZVd be a valid outcome with d ≥ 12, let M be a new symbol, and define

relcoord: {0, . . . , d} → {0, . . . , 3,M, d− 6, . . . , d}

i ↦→

⎧⎪⎨⎪⎩
i when i ∈ {0, . . . , 3},
M when i ∈ {4, . . . , d− 7},
i when i ∈ {d− 6, . . . , d}
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and

relset : ZVd → 2{0,...,3,M,d−6,...,d}2

w ↦→ {(relcoord(i), relcoord(j)) | (i, j) ∈ supp(w) 

Lemma 7.6. Write contr′d(sign(w))) = (s, r, t, α, β, γ).

(a) For i, j ∈ {0, . . . , 3}, if si,j ̸= 0, then (i, j) ∈ relset(w).
(b) For i, j ∈ {0, . . . , 3}, if ri,j ̸= 0, then (i, d− 3 + j − i) ∈ relset(w).
(c) For i, j ∈ {0, . . . , 3}, if ti,j ̸= 0, then (d− 3 + i− j, j) ∈ relset(w).
(d) For i ∈ {0, . . . , 3}, if αi ̸= 0, then relset(w)∩{(i,M), (i, d−6), . . . , (i, d−4−i)} ̸= ∅.
(e) For j ∈ {0, . . . , 3}, if βj ̸= 0, then relset(w)∩{(M, j), (d−6, j), . . . , (d−4−j, j)} ̸= ∅.
(f) For k ∈ {0, . . . , 3}, if γk ̸= 0, then

relset(w)∩{(M,d−4−k), . . . , (M,d−6), (M,M), (d−6,M), . . . , (d−4−k,M)} ̸= ∅.

Proof. Follows from the definition of relset. □
We can use the Invertibility Criterion to prove that some subsets of {0, . . . , 3,M, d−

6, . . . , d}2 are not of the form relset(w) for an outcome w ∈ ZVd with # relset(w) =
# supp(w).

Example 7.7. Let w ∈ ZVd for d ≥ 12. Suppose that # supp(w) = 7 and

relset(w) = {(0, 0), (0, d), (1, 3), (M, 2), (M,d− 6), (d− 5,M), (d, 0)}.

We claim that w cannot be an outcome. Indeed, we have

supp(w) = {(0, 0), (0, d), (1, 3), (i, 2), (j, d− 6), (d− 5, k), (d, 0)}

for some i, j, k ∈ {4, . . . , d− 7}. We now partition supp(w) as follows:

supp(w) = {(0, 0), (0, d), (1, 3)} ∪ {(i, 2), (j, d− 6)} ∪ {(d− 5, k)} ∪ {(d, 0)}
= {(0, 0), (0, d), (1, 3)} ∪ {(i, 2)} ∪ {(j, d− 6)} ∪ {(d− 5, k)} ∪ {(d, 0)}.

When i = j, we can apply the Invertibility Criterion with the first partition to see that 
no outcome with support supp(w) exists. When i ̸= j, we can apply the Invertibility 
Criterion with the second partition to get the same result. Hence w is not an outcome.

The proof of our desired result will end by verifying by hand the following special 
case.
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Lemma 7.8. There is no weakly valid outcome w ∈ ZVd such that

supp+(contr′d(sign(w))) = {x0,0, y0,3, z3,0, c1, b1, d1}.

Proof. Assume that such a w exists. The support of w is then of the form

S = {(0, 0), (d, 0), (0, d), (i, 1), (1, j), (k, d− 1 − k)}.

Write d = 2e + 1. When j ̸= e, we see that S cannot be the support of an outcome 
using the Invertibility Criterion. Using symmetry, we similarly find that S cannot be the 
support of an outcome when i ̸= e or k ̸= e. This leaves the case where

S = {(0, 0), (d, 0), (0, d), (e, 1), (1, e), (e, e)}.

Now we take E = {0, 1, 3, e, d− 1, d}. Then

A
(d)
E,S =

⎛⎜⎜⎜⎜⎜⎝
1 0 1 0 0 0
d 0 0 0 1 0(︁
d
3 
)︁

0 0 0
(︁
e 
2
)︁

0(︁
d
e 
)︁

0 0 1 e 1
d 0 0 1 0 0
1 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
has determinant (2e + 1)(e + 1)e/6 ̸= 0 and is hence invertible. So S is not the support 
of an outcome in this case. □

We are now ready to prove our main result for the section.

Theorem 7.9. Let w ∈ ZVd be a valid outcome and suppose that # supp+(w) = 5. Then 
deg(w) ≤ 7.

Proof. Let w ∈ ZVd be a valid outcome and suppose that # supp+(w) = 5. We may 
assume that deg(w) = d. To start, we verify by computer that d ̸∈ {8, . . . , 41} using the 
Hyperfield Criterion followed by the Invertibility Criterion. Now assume that d ≥ 42.

Let θ′ := contr′d(sign(w)). By Lemmas 7.3 and 7.4, θ′ has positive support of size 5. 
By starting with the finite set Γeven ∪ Γodd and applying our simplification χ, we verify 
by computer that we have 2289 possibilities for θ′. We will exclude each one of these.

We start by using the Invertibility Criterion directly on subsets of {0, . . . , 3,M, d −
6, . . . , d}2. We use the technique of partitioning the set {0, . . . , d} into smaller subsets 
as detailed in Subsection 5.2 and shown in Example 7.7, together with Proposition 5.7
which says that the pairing matrix of certain small subsets is invertible. The symbol M
acts as a placeholder for the middle range of indices. We make the following observations.

(a) By Lemma 7.5, we have at most two elements of the form (M, •). These elements 
originate from vertices (i, •) ∈ Vd with 4 ≤ i ≤ d − 7. Assume that we have two such 
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vertices (i, •) and (i′, •). Then we have to apply the Invertibility Criterion in a different 
way depending on whether i, i′ are equal or not. In the first case, (i, •) and (i′, •) have to 
lie in a common size-two subset of the partition. This is because # supp(w) = 5, so that 
any given subset of the partition is either contained in the set of i-coordinates represented 
by M or it is disjoint from it. In the second case (i, •) and (i′, •) are separated into 
two size-one subsets. Since the pairing matrix associated to a size-one subset is always 
invertible, the partition for the second case works if the corresponding partition for the 
first case does. Therefore, we may assume that i = i′. A similar statement holds for the 
at most two elements of the form (•,M), again by Lemma 7.5.

(b) Assume that we have elements (i, x), (i, y), (i′, z) ∈ Vd with i < i′ and x < y. 
Then we can apply the Invertibility Criterion as long as the condition x + y ̸= 2z + 1
is met. In some cases, we can conclude that this condition holds even if we only know 
relcoord(x), relcoord(y), relcoord(z). For example, when relcoord(x) ≤ 3, relcoord(y) ≥
d− 6, relcoord(z) ̸= M , then x + y ̸= 2z + 1 since we assume that d ≥ 40.

Given that contr′d(sign(w)) = θ′, using Lemma 7.6 we can now write down a finite 
list of possibilities for relset(w). For each possibility, we attempt to show that w cannot 
exist using the Invertibility Criterion. When this is successful for all possibilities, we can 
discard the case contr′d(sign(w)) = θ′. In this way, we can reduce the number of possible 
cases to 1107. Next, we use symmetry to further reduce the number of cases. We have 
an action of S3 on ZVd given by

(12) ∗ (wi,j)(i,j)∈Vd
= (wj,i)(i,j)∈Vd

(13) ∗ (wi,j)(i,j∈Vd) = (wd−deg(i,j),j)(i,j)∈Vd

which naturally descends to HVd and HΞ′ . On the latter set it is given by

(12) ∗ (s, r, t, α, β, γ) :=
(︁
(sj,i)3i,j=0, (tj,i)3i,j=0, (rj,i)3i,j=0, β, α, γ

)︁
,

(13) ∗ (s, r, t, α, β, γ) :=
(︁
(t3−i,j)3i,j=0, (r3−j,3−i)3i,j=0, (s3−i,j)3i,j=0, α, γ, β

)︁
for all (s, r, t, α, β, γ) ∈ HΞ′ . This action satisfies

σ ∗ contr′d(sign(w)) = contr′d(σ ∗ sign(w)) = contr′d(sign(σ ∗ w))

for all weakly valid outcomes w ∈ ZVd and σ ∈ S3. While σ ∗ w is not an necessarily an 
outcome (although it is a weakly valid configuration), its support is also the support of 
an outcome, namely σ ·w, using the group action from Subsection 3.3. Therefore, proving 
with the Invertibility Criterion that there is no outcome with that support suffices to 
exclude the case contr′d(sign(w)) = θ′. Doing this whenever possible allows us to reduce 
the number of possible cases further to 349.

Our last step is to apply the Hexagon Criterion to these 349 cases. First, assume that

supp+(θ′) ∩ {c0, . . . , c3, b0, . . . , b3, d0, . . . , d3} = ∅ (3)
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holds. Then we can apply the Hexagon Criterion with d′ = 6 and ℓ1 = ℓ2 = 7 since 
d ≥ 20. We find that 20 ≤ d = deg(w) ≤ d′ = 6. This is a contradiction and so each of 
the 325 cases satisfying (3) are not possible. This reduces the number of possible cases 
to 24.

Next, we assume that

# supp+(θ′) ∩ {c0, c1, b0, b1, d0, d1} = 1 and 

# supp+(θ′) ∩ {c2, c3, b2, b3, d2, d3} = 0. (4)

This means that

supp(w) \ {(a, b)} ⊆ V6 ∪ {(i, j) ∈ Vd | j > d− 7} ∪ {(i, j) ∈ Vd | i > d− 7}

for some (a, e) ∈ Vd with a ≤ 1, e ≤ 1 or deg(a, e) ≥ d− 1. Indeed, when ci ∈ supp+(θ′)
we get such an (a, e) with a = i, when bj ∈ supp+(θ′) we get such an (a, e) with b = j

and when dk ∈ supp+(θ′) we get such an (a, e) with deg(a, e) = d− k. Now, at least one 
of the following holds:

(a) We have deg(a, e) ≤ ⌊d/3⌋.
(b) We have a ≥ ⌊d/3⌋.
(c) We have e ≥ ⌊d/3⌋.

When a ≤ 1 and deg(a, e) > ⌊d/3⌋, we see that e ≥ ⌊d/3⌋. When e ≤ 1 and deg(a, e) >
⌊d/3⌋, we see that a ≥ ⌊d/3⌋. When deg(a, e) ≥ d−1, then either a ≥ ⌊d/3⌋ or e ≥ ⌊d/3⌋. 
So indeed, one of these statements has to hold.

When (a) holds, then we can apply the Hexagon Criterion with d′ = ℓ1 = ℓ2 = ⌊d/3⌋ ≥
7 since d ≥ 21. When (b) holds, then we use d′ = 6, ℓ1 = 7 and ℓ2 = d+1−⌊d/3⌋ instead. 
We can do this since d ≥ 42. When (c) holds, then we use d′ = 6, ℓ1 = d+1−⌊d/3⌋ and 
ℓ2 = 7 instead. In each case, we find that d = deg(w) ≤ d′ < d. This is a contradiction. 
Hence each of the 23 cases satisfying (4) are not possible.

This leaves one single case remaining where

supp+(θ′) = {x0,0, y0,3, z3,0, c1, b1, d1}.

That case cannot occur by Lemma 7.8. This finishes the proof. □
8. Examples and discussion

In this paper, a theorem about the classification of discrete statistical models (Theo-
rem 2.11) has motivated a combinatorial puzzle about chipsplitting games (Section 3): 
can the degree of a valid chipsplitting outcome grow indefinitely while the size of its 
support remains fixed? Theorem 1.9 answers this in the negative for certain support 
sizes. The theorem suggests a natural generalization.
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Fig. 8. Support of the valid outcome defined in Corollary 8.3 for k = 3. 

Conjecture 8.1. Let w be a valid outcome with a positive support of size n + 1. Then

deg(w) ≤ 2n− 1.

In fact, we could have the right-hand side of the above inequality be any function 
of n and still be satisfied with the fact that the degree is bounded, as this would still 
guarantee a finite number of fundamental models in Δn. However, we know that the 
term 2n− 1 is attained for infinitely many d.

Lemma 8.2. Let k ≥ 0 be an integer. Then

t2k+1 +
k∑︂

i=0 

2k + 1
2i + 1 

(︃
k + i

2i 

)︃
tk−i(1 − t)2i+1 = 1.

Proof. Let S(k) denote the above sum and let F (k, i) be its i-th summand. We find the 
recurrence

t2F (k − 1, i) − (1 − t)2F (k, i− 1) − 2tF (k, i) + F (k + 1, i) = 0

following Sister Celine’s method [12]. We sum over all integers i to obtain

t2S(k − 1) − (1 + t2)S(k) + S(k + 1) = 0.

Using this identity, it is easy to prove by induction on k that S(k) = 1 − t2k+1, as 
required. □
Corollary 8.3. Let k ≥ 0 be an integer and let w ∈ Z2 be the chip configuration be defined 
by

w0,0 = −1, w2k+1,0 = 1, wk−i,2i+1 = 2k + 1
2i + 1 

(︃
k + i

2i 

)︃
for i ∈ {0, 1, . . . , k} and wi,j = 0 otherwise (Fig. 8). Then w is a valid outcome.
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Table 1
Number of fundamental outcomes of degree d with 
# supp+(w) = n + 1.

n⟍d 1 2 3 4 5 6 7 8 9 
1 1 
2 3 1 
3 12 4 2 
4 82 38 10 4 
5 602 254 88 24 2 

We conclude this paper with a discussion of computational results. Fixing a degree d, 
there are only finitely many fundamental outcomes of degree ≤ d. It would be desirable 
to explicitly determine all of these and check that d ≤ 2n− 1 holds for every computed 
outcome w with supp+(w) =: n + 1. In principle one could check every possible subset 
S ⊆ {(i, j) | i+ j ≤ d} for fundamental outcomes of support S, but this is computation-
ally untractable. We were nevertheless able to carry out this computation for d ≤ 9 and 
positive support size ≤ 6 using an optimization. The computer code for this is presented 
at https://mathrepo.mis.mpg.de/ChipsplittingModels along with a proof of its correct-
ness. Table 1 shows an overview of our results. Thus, by the results of Sections 5- 7, 
we now know that there are exactly 1, 4, 18, 134 fundamental models in Δ1,Δ2,Δ3,Δ4, 
respectively. We confirm that d ≤ 2n−1 holds for every computed outcome. We also see 
that n ≤ d for all fundamental models, as shown in Proposition 4.8.

Our computations show that for n = 1, 2, 3, 4, 5 there are 1, 1, 2, 4, 2 fundamental 
outcomes w with # supp+(w) = n + 1 and deg(w) = 2n − 1, respectively. Taking into 
account that if w is a fundamental outcome then so is (12) · w, most of these examples 
were already constructed in Corollary 8.3. The exceptions are the following two degree-7
fundamental outcomes.
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